Clinical Trials Logo

Tetraplegia clinical trials

View clinical trials related to Tetraplegia.

Filter by:

NCT ID: NCT04064385 Recruiting - Tetraplegia Clinical Trials

Functional Electrical Stimulation Cycling in SCI

Start date: June 1, 2019
Phase: N/A
Study type: Interventional

Spinal cord injury (SCI) is a devastating, life-altering injury; requiring tremendous changes in an individual's lifestyle. Cycling, provides an ideal way for individuals with SCI to exercise and address the long-term consequences of SCI by targeting the lower extremity muscles. Cycling with the addition of functional electrical stimulation (FES) allows persons with paralysis to exercise their paretic or paralysed leg muscles. The Queen Elizabeth National Spinal Injury Unit (QENSIU) in Glasgow offers FES cycling for people with spinal cord injuries, which combines functional electrical stimulation (FES) with a motorised ergometer that allows repetitive cycling activity. It stimulates muscles with electrodes attached to the skin, producing muscle contractions and patterned activity. So far no previous randomised control trials on FES cycling in the acute SCI population have reported changes in ability to undertake activities of daily living or the trunk balance.

NCT ID: NCT04041063 Recruiting - Clinical trials for Spinal Cord Injuries

Rehabilitation and Cortical Remodeling After Surgical Intervention for Spinal Cord Injury

Start date: July 26, 2019
Phase: Phase 2
Study type: Interventional

The aim of this study is to determine the effects of rehabilitation on dexterous hand movements and cortical motor map changes in tetraplegic patients following nerve transfer surgery. The working hypothesis is that robot-assisted, intensive rehabilitation will support the return of hand and arm function and strengthen the cortical representations of targeted muscles. The investigators will assess this through TMS mapping and clinical measures of hand and arm function.

NCT ID: NCT04023591 Recruiting - Clinical trials for Spinal Cord Injuries

Nerve Transfer After Spinal Cord Injury- Multi-center

Start date: April 13, 2020
Phase:
Study type: Observational

Current treatment strategies of acute cervical spinal cord injuries remain limited. Treatment options that provide meaningful improvements in patient quality of like and long-term functional independence will provide a significant public health impact. Specific aim: Measure the efficacy of nerve transfer surgery in the treatment of patients with complete spinal cord injuries with no hand function. Optimize the efficiency of nerve transfer surgery by evaluating patient outcomes in relation to patient selection and quality of life and functional independence.

NCT ID: NCT03898804 Recruiting - Tetraplegia Clinical Trials

An Early Feasibility Study of the ReHAB System

ReHAB
Start date: April 9, 2019
Phase: N/A
Study type: Interventional

The purpose of this research study is to examine the feasibility of a system that involves implanting small electrodes in the parts of the brain that control movement and sensation, and combining that with electrodes in the upper arm and shoulder to activate paralyzed muscles of the arm and hand. This system is intended for people with extensive paralysis in their arms. The small electrodes in the brain will be used to attempt to measure intended movements, and the muscles in the arm and hand will be stimulated to attempt to follow those intentions. The study is a prospective, non-randomized, open-label, exploratory safety/feasibility trial of up to 12 subjects. The Primary Endpoint will be evaluation over the first 13 months after implantation, after which the subjects will have the option of removal of the device or continued participation in a long-term study.

NCT ID: NCT03567213 Recruiting - Clinical trials for Amyotrophic Lateral Sclerosis

Investigation on the Cortical Communication (CortiCom) System

CortiCom
Start date: December 14, 2021
Phase: N/A
Study type: Interventional

The CortiCom system consists of 510(k)-cleared components: platinum PMT subdural cortical electrode grids, a Blackrock Microsystems patient pedestal, and an external NeuroPort Neural Signal Processor. Up to two grids will be implanted in the brain, for a total channel count of up to 128 channels, for six months. In each participant, the grid(s) will be implanted over areas of cortex that encode speech and upper extremity movement.

NCT ID: NCT03495986 Recruiting - Metabolic Syndrome Clinical Trials

Spinal Cord Injury Exercise and Nutrition Conceptual Engagement

SCIENCE
Start date: June 10, 2021
Phase: N/A
Study type: Interventional

Evaluate and compare the health benefits of an at home exercise program using functional electrical stimulation (FES) for lower extremity exercise with diet versus a diet alone group in adults with spinal cord injury.

NCT ID: NCT03161067 Recruiting - Tetraplegia Clinical Trials

Investigation on the Bidirectional Cortical Neuroprosthetic System

BiCNS
Start date: August 1, 2017
Phase: N/A
Study type: Interventional

The Bidirectional Cortical Neuroprosthetic System (BiCNS) consists of NeuroPort Microelectrode Array Systems and NeuroPort Electrodes (Sputtered Iridium Oxide Film), Patient Pedestals, the NeuroPort BioPotential Signal Processing System, and the CereStim C96 Programmable Stimulator. The goals of this early feasibility study consist of safety and efficacy evaluations of this device.

NCT ID: NCT03100110 Recruiting - Tetraplegia Clinical Trials

NeuroCognitive Communicator: Safety Study

NCC-1701
Start date: May 13, 2019
Phase: N/A
Study type: Interventional

Individuals suffering from tetraplegia as a result of cervical spinal cord injury, brainstem stroke, or amyotrophic lateral sclerosis (ALS) cannot independently perform tasks of daily living. In many cases, these conditions do not have effective therapies and the only intervention is the provision of assistive devices to increase independence and quality of life. However, currently available devices suffer from usability issues and are limiting for both the patient and caregiver. One of the most progressive alternative strategies for assistive devices is the use of brain-computer interface (BCI) technology to translate intention signals directly from sensors in the brain into computer or device action. Preclinical primate research and recent human clinical pilot studies have demonstrated success in restoring function to disabled individuals using sensors implanted directly in motor regions of the brain. Other preclinical primate research has demonstrated effective intention translation from sensors implemented in cognitive regions of the brain and that this information complements information from the motor regions. The current proposal seeks to build on these studies and to test the safety aspects related to implanting two sensors, each a microelectrode array, into both the motor and cognitive regions of the brain in motor impaired humans. Secondary objectives include feasibility evaluation of the complementary sensors in their ability to support effective assistive communication.

NCT ID: NCT02314221 Recruiting - Spinal Cord Injury Clinical Trials

Exoskeletal-assisted Walking to Improve Mobility, Bowel Function and Cardio-Metabolic Profiles in Persons With SCI

EAWSCI
Start date: February 2015
Phase: N/A
Study type: Interventional

The primary objective of this study is to achieve successful walking skills using exoskeletal walking devices over the course of 36 sessions in 3 months at specific velocities and distances in people with chronic SCI who are wheelchair dependent for community mobility. The secondary objectives are to determine if this amount of exoskeletal walking is effective in improving bowel function and body composition in the same patient population. The exploratory objectives are to address additional questions concerning the retention or non-retention of the positive changes, the effects of the increased physical activity from this intervention on vagal tone, orthostatic tolerance, lipid profile, total testosterone, estradiol levels, and quality of life (QOL). A Phase III randomized clinical trial (RCT) will be performed using a crossover design and employing an exoskeletal-assisted walking intervention. The experimental arm will be compared to a usual activities (UA) arm, as the control, in 64 persons with chronic SCI (>6 month post injury) who are wheelchair-dependent for outdoor mobility in the community. The WALK arm will consist of supervised exoskeletal-assisted walking training, three sessions per week (4-6 h/week) for 36 sessions for their second 12-week period. The UA arm will consist of identification of usual activities for each participant, encouragement to continue with these activities and attention by study team members throughout the 12-week UA arm. These activities will be recorded in a weekly log. The investigators hypotheses are that 1) this exoskeletal intervention will be successful in training ambulatory skills in this patient population, 2) the exoskeletal intervention will be better than a control group in improving body composition, bowel function, metabolic parameters and quality of life in the same population.

NCT ID: NCT01894802 Recruiting - Spinal Cord Injury Clinical Trials

Cortical Recording and Stimulating Array Brain-Machine Interface

CRS-BMI
Start date: December 1, 2013
Phase: N/A
Study type: Interventional

The purpose of this research study is to demonstrate the safety and efficacy of using two CRS Arrays (microelectrodes) for long-term recording of brain motor cortex activity and microstimulation of brain sensory cortex.