View clinical trials related to Tachycardia.
Filter by:Many patients with postural orthostatic tachycardia syndrome (POTS) have decreased plasma volume. Current POTS guidelines recommend ~10 g of salt and 2-3 L of fluid per day. Despite this recommendation, there is no long term data evaluating the use of salt in POTS. This randomized, placebo-controlled cross-over trial will evaluate a high salt diet, compared to a normal salt diet over a period of 3 months. Participants will complete 3 in lab evaluations including autonomic function testing, tilt table testing, blood volume and urine sodium evaluation, plasma catecholamine measurements and and cytokine measurements.
Postural tachycardia syndrome (POTS) is the most common chronic cause of postural lightheadedness, and upright confusion afflicting many Americans, mostly young women. Many POTS patients hyperventilate by increasing their depth of breathing that produces tachycardia, alters blood flow and blood pooling in the body and importantly reduces brain blood flow causing "brain fog". In this proposal the investigators will demonstrate in young women that abnormal repeated brief impairment of blood pressure and brain flow just after standing sensitizes the body's oxygen sensor in POTS to respond as if it were in a low oxygen environment causing hyperventilation and its consequences. In this project the investigators will use various drugs that will help to understand the mechanisms that cause POTS in this unique subset of POTS patients who hyperventilate.
The OLE study aims to investigate the safety, efficacy, pharmacodynamics (PD), pharmacokinetics (PK), and immunogenicity of efgartigimod in participants with post-COVID-19 postural orthostatic.
Patients with Postural Orthostatic Tachycardia Syndrome (POTS) and Post-Acute Sequelae of COVID (PASC, or "Long COVID") experience cognitive dysfunction. The investigators will test the hypothesis that 999 mL of IV saline will improve cognitive function in patients with POTS and Long COVID compared to placebo (50 mL of saline).
Prospective single-arm study investigating the efficacy and safety of non-invasive cardiac radiosurgery for the treatment of ventricular tachycardia (VT) with reduced dose of radiation (20 Gy). The efficacy and safety outcome measures will be compared with historical control - patients treated within the SMART-VT study (NCT04642963) with a single dose of 25 Gy to test the hypothesis that reduced dose of radiation is similarly effective in terms of reduction of VT burden.
Study protocol To prepare for the electrophysiologic study, antiarrhythmic drugs were discontinued at least five half-lives before the procedure and were under conscious sedation using midazolam ± fentanyl while fasting. ICE-guided ablation group In patients randomized to ICE-guided ablation group, catheter placement was initially performed using fluoroscopy guidance, after local anesthesia. A decapolar steerable catheter was placed in the coronary sinus (CS), a quadripolar electrode catheter was positioned in the right ventricular apex and an ablation catheter was inserted to record the His bundle electrogram. Twelve-lead electrocardiogram and intracardiac electrograms were recorded and saved on a digital recording system using a band pass filter of 30 to 500 Hz. Electrical stimulation techniques were used to test atrioventricular nodal conduction and induce AVNRT, with the S2 coupling interval being gradually shortened after each drive-train until tachycardia was induced, AV conduction block occurred, or the atrial refractory period was reached. If tachycardia was not inducible, isoprenaline infusion was given to increase the heart rate by at least 20%, and the same stimulation protocol was repeated during both the infusion and washout phases. The diagnosis of AVNRT was made using established electrophysiologic criteria and pacing maneuvers. This involved assessing the A-(H)-V response after ventricular overdrive pacing, with an SA-VA interval greater than 85 ms, and a corrected postpacing interval minus tachycardia cycle length greater than 110 ms. After confirmation of the diagnosis of AVNRT through the diagnostic EP study, the quadripolar electrode catheter was removed and replaced with an 8F ICE catheter for mapping and SP ablation. The echo-transducer was positioned in the low right atrium at the 6 o'clock position and rotated clockwise towards the septum to allow for visualization of the anatomic landmarks. The proximity of the ablation catheter to the compact AV node was determined by the distance from the aortic valve, which marks the recording site of a proximal His potential. In cases of ineffective ablation, the catheter was moved closer to the aortic valve, but always maintaining a distance of at least 0.5 cm, and RF application was attempted again. RF energy was delivered starting just below the CS with a power output of 30 W and a preset temperature of 55°C. Effective applications were continued for 30 to 60 s and considered successful when junctional rhythm appeared. RF application was immediately halted if there was catheter displacement, sudden impedance rise, prolongation of PR interval, anterograde AV or retrograde VA block. Electroanatomical mapping system -guided ablation group An ablation catheter was inserted into the heart to create an anatomical map by CARTO of the right atrium after local anesthesia, and the location of the His bundle was tagged. Decapolar and quadripolar diagnostic catheters were positioned thereafter into appropriate position as described above. After confirming the diagnosis of AVNRT, mapping of the slow pathway was started by NAVISTAR catheter guided by EAMS and aiming at an atrial-to-ventricular electrogram amplitude ratio of 1:3-1:5. If the ablation endpoint was not reached after 8 radiofrequency (RF) applications, patients in the EMAS-guided ablation group were allowed to crossover to an ICE-guided procedure. The ablation procedure was deemed successful if, following a 20-minute waiting period, the arrhythmia failed to be induced and there were no instances of more than one echo beat observed, both in the presence and absence of isoprenaline. The procedure time was measured from the initial femoral puncture until the withdrawal of the catheters. The mapping plus ablation time was calculated from the start of the SP mapping until the end of the last attempted ablation. Fluoroscopy time, radiation dose, and dose-area product (DAP) were automatically recorded by the fluoroscopy system. The ablation data, including the total number of RF applications, sum of delivered RF energy in Watts, and the total ablation time in seconds, were calculated and stored by the EP recording system (CardioLab, GE Healthcare).
"Chang Gung ECG Abnormality Detection Software" is a is an artificial intelligence medical signal analysis software that detect whether patients have abnormal ECG signals of 14 diseases by static 12-lead ECG. The 14 diseases were - Long QT syndrome - Sinus bradycardia - Sinus Tachycardia - Premature atrial complexes - Premature ventricular complexes - Atrial Flutter, Right bundle branch block - Left bundle branch block - Left Ventricular hypertrophy - Anterior wall Myocardial Infarction - Septal wall Myocardial Infarction - Lateral wall Myocardial Infarction - Inferior wall Myocardial Infarction - Posterior wall Myocardial Infarction The main purpose of this study is to verify whether "Chang Gung ECG Abnormality Detection Software" can correctly identify abnormal ECG signals among patients of 14 diseases. The interpretation standard is the consensus of 3 cardiologists. The results of the software analysis will be used to evaluate the performance of the primary and secondary evaluation indicators.
Radiofrequency ablation of ventricular tachycardias (VTs) is the gold standard treatment of refractory VTs in patients with ischaemic heart disease. In this setting, ablation is usually performed endocardially. However, even after a procedural success there is a high risk of recurrence, particularly due to the inability to create transmural lesions. Indeed, only the endocardium of the LV has been ablated, while a significant part of the arrhythmia substrate may be located on the other side of the myocardial thickness, on the epicardial side of the LV. First described in 1996, epicardial ablation, performed via a percutaneous subxyphoid approach, has since undergone considerable development. Electrophysiologists often use a double endo- and epicardial approach as first line therapy for the ablation of VTs complicating myocarditis or arrhythmogenic dysplasia of the right ventricle, where the substrate is most often epicardial. For VT in ischaemic heart disease, electrophysiologists perform endocardial ablation, and often perform epicardial ablation only after several endocardial failures. Several observational studies suggest that a combined endo- and epicardial approach as first line therapy is associated with a reduced risk of VT recurrence. Since recurrent VT in patients with ischaemic heart disease as a prognostic impact in terms of morbidity and mortality, it appears essential to optimise rhythm management by ablation, by offering a combined approach from the as first approach to reduce the risk of recurrences. The aim of our prospective, multicentre, controlled, randomized study is therefore to compare the rate of VT recurrence after ablation performed as first line therapy either by endocardial approach alone or by combined endo-epicardial approach.
Demonstrate the safety and effectiveness of the Ablacathâ„¢ Mapping Catheter and Ablamap® System in patients with all types of atrial fibrillation (AF) including paroxysmal or persistent or long-standing persistent, undergoing and De Novo or Redo procedures. Phenotype patients and demonstrate the prognostication power of Electrographic Flow (EGF®) maps among all subjects using 12-month follow-up outcomes following EGF-guided mapping and ablation.
Covid-19 has the potential to affect physical, cognitive and psychological functions in multiple ways. It has been clear that a significant proportion of patients with Covid-19 develop long-term symptoms. The term post COVID-19 condition (defined by WHO) is used to describe the wide range of prolonged symptoms following the infection. Patients may need specialized rehabilitation to be able to meet the complex symptoms and problems that may arise. A more specific syndrome that seems to occur more frequently than expected in the group of non-hospitalized patients with post COVID-19 condition is the postural orthostatic tachycardia syndrome (POTS). A randomized controlled design will be used to evaluate the effects of individual tailored physical exercise in patients with POTS after Covid-19. Participants: Adults (>18 years) with post COVID-19 condition and diagnosed with POTS (n=60) will be included. Exclusion criteria: known pregnancy, cancer, already ongoing individual physical exercise (specific for POTS), or not able to perform measurements and/or intervention. Procedure and outcomes: The primary outcomes are objectively measured time in upright position and health-related quality of life. Secondary outcomes are: physical activity, physical capacity, work ability and disease specific symptoms measured with tests and questionnaires. Prior to randomization baseline measurements will be performed, aswell as after 16 weeks, 6 months and 12 months. Intervention: Participants randomized to intervention will receive standard care and undergo a individually designed physical exercise program during 16 weeks, supervised and guided by a physiotherapist. The intervention will consist of different exercises to enhance muscle strength and endurance. Progression will be according to a program (based on previous feasibility studie) but should be halted if post exertional malaise (PEM) or other problems occur. Controls: Participants randomized to control will receive standard care during 16 weeks. Measurements of both groups (control and intervention) will be repeated after completion of a period of 16 weeks.