View clinical trials related to Synovial Sarcoma.
Filter by:The PerVision trial utilizes an approach of a patient-individual cancer vaccine with sarcoma-specific peptides in metastasized fusion-driven sarcoma patients determined by next generation whole exome sequencing of tumor and normal tissue as well as RNA sequencing of the tumor. This approach is applicable to all patients independent of the expression of distinct tumor associated antigens, and independent of their human leukocyte antigen-typing (HLA-typing). The results of this study can directly be translated to other tumor entities. It is an interventional, multicenter, open-label, phase I/II feasibility and early proof of concept study evaluating a personalized peptide vaccine. Primary objective is to evaluate safety and success of treatment, the latter be defined as vaccination-induced T-cell response without unacceptable toxicity.
The purpose of this study is to collect and store data and samples for future research to attempt to improve outcomes for patients with synovial sarcoma. The future research will involve various types of genetic testing. Participants will be asked to allow access to medical records and leftover tumor tissue and may be asked to give a blood or saliva sample. Participants will also be asked to completed questionnaires about their medical history and may be contacted every 6 to 12 months for updates for up to 10 years.
This is an open-label, two-part, phase 1-2 study designed to determine the safety, tolerability, PK, pharmacodynamics (PD), and proof-of-concept efficacy of ST316 administered IV in subjects with selected advanced solid tumors likely to harbor abnormalities of the WNT/β-catenin signaling pathway. The study consists of two phases: a phase 1 dose escalation/regimen exploration phase and a phase 2 expansion phase.
This is a pediatric basket study to investigate the safety and efficacy of afamitresgene autoleucel in HLA-A*02 eligible and MAGE-A4 positive subjects aged 2-21 years of age with advanced cancers
This study is being conducted to explore the immunological mechanism of action of Peptide-coated Conditionally Replicating Adenovirus-1 (PeptiCRAd-1) plus Checkpoint inhibitor (CPI) therapy in multiple cancer types, as well as to obtain early information on the safety of this combination therapy.
The purpose of this study is to learn whether it is safe to give HER2-CAR T cells in combination with an immune checkpoint inhibitor drug (pembrolizumab or nivolumab), to learn what the side effects are, and to see whether this therapy might help patients with sarcoma. Another goal of this study is to study the bacteria found in the stool of patients with sarcoma who are being treated with HER2 CAR T cells and immune checkpoint inhibitor drugs to see if the types of bacteria influence how well the treatment works. The investigators have found from previous research that they can put a new gene into T cells that will make them recognize cancer cells and kill them. They now want to see if they can put a new gene in these cells that will let the T cells recognize and kill sarcoma cells. The new gene that the investigators will put in makes an antibody specific for HER2 (Human Epidermal Growth Factor Receptor 2) that binds to sarcoma cells. In addition, it contains CD28, which stimulated T cells and make them last longer. After this new gene is put into the T cell, the T cell becomes known as a chimeric antigen receptor T cell or CAR T cell. In another clinical study using these CAR T cells targeting HER2 as well as other studies using CAR T cells, investigators found that giving chemotherapy before the T cell infusion can improve the effect the T cells can have. Giving chemotherapy before a T cell infusion is called lymphodepletion since the chemotherapy is specifically chosen to decrease the number of lymphocytes in the body. Decreasing the number of the patient's lymphocytes first should allow the infused T cells to expand in the body, and potentially kill cancer cells more effectively. The chemotherapy used for lymphodepletion is a combination of cyclophosphamide and fludarabine. After the patient receives the lymphodepletion chemotherapy and CAR T cells during treatment on the study, they will receive an antibody drug called an immune checkpoint inhibitor, pembrolizumab or nivolumab. Immune checkpoint inhibitors are drugs that remove the brakes on the immune system to allow it to act against cancer.
This is a study to investigate the efficacy and safety of ADP-A2M4 in HLA-A*02 eligible and MAGE-A4 positive subjects with metastatic or inoperable (advanced) Synovial Sarcoma (Cohort 1, 2 and 3 ) or MRCLS (Cohort 1) .
This study is to collect and validate regulatory-grade real-world data (RWD) in oncology using the novel, Master Observational Trial construct. This data can be then used in real-world evidence (RWE) generation. It will also create reusable infrastructure to allow creation or affiliation with many additional RWD/RWE efforts both prospective and retrospective in nature.
This is a biology driven, monocentric study, designed to identify biomarkers of activity of trabectedin in patients with advanced non-L soft-tissue sarcoma. The aim of this study is to implement high-throughput profiling technologies to identify predictive biomarkers of trabectedin efficacy through sequential tumor biopsies and blood sample collection in sarcoma patients.
This is a single arm, open-label, uni-center, phase I-II study to evaluate the safety and effectiveness of CAR-T/TCR-T cell immunotherapy in treating with different malignancies patients.