Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT06160453
Other study ID # 73297
Secondary ID
Status Not yet recruiting
Phase N/A
First received
Last updated
Start date December 10, 2023
Est. completion date December 31, 2023

Study information

Verified date December 2023
Source Aristotle University Of Thessaloniki
Contact Alkinoos Athanasiou, PhD
Phone 00302310999237
Email athalkinoos@auth.gr
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

HEROES is a multidisciplinary neurophysiological & neural rehabilitation engineering project, developed by the Lab of Medical Physics & Digital Innovation, School of Medicine, Faculty of Health Science Aristotle University of Thessaloniki and supported by a Neurosurgical Department. The website for the project can be accessed at https://heroes.med.auth.gr. The investigation's primary objectives include the development, testing and optimization of an intervention based on multiple immersive man-machine interfaces offering rich feedback, that include a) mountable robotic arm controlled with wireless Brain-Computer Interface and b) wearable robotics jacket & gloves in combination with a serious game application and c) augmented reality module for the presentation of the previous two, as well as the development and validation of a self-paced neuro-rehabilitation protocol for patients after chronic stroke with severe residual motor disability.


Description:

HEROES project's full title is . It is a multidisciplinary neurophysiological & neural rehabilitation engineering project, developed by the Lab of Medical Physics & Digital Innovation, School of Medicine, Faculty of Health Science Aristotle University of Thessaloniki and supported by a Neurosurgical Department. The website for the project can be accessed at https://heroes.med.auth.gr . The HEROES project involves: - A clinical study for rehabilitation of patients with Chronic Stroke (CS), using multiple immersive man-machine interfaces (Brain-Computer Interface (BCI) controlled robotic arms device, Wearable Robotics Jacket & Gloves, Serious Gaming Application, Augmented Reality presentation) - A secondary off-line neurophysiological analysis of brain activation, connectivity and plasticity as well as muscle electrophysiology in patients with CS undergoing motor imagery (MI) and BCI training and assistance through electrical muscle stimulation Milestones of the study: - The investigators aim to develop, test and optimize an intervention based on multiple immersive man-machine interfaces - The investigators aim to develop and validate self-paced neuro-rehabilitation protocols for patients with CS. - The investigators aim to identify and study the neurophysiological functionality and alteration of brain activity in chronic CS. The brain neuron networks of Chronic Stroke (CS) patients and healthy individuals share similar connectivity patterns of, but new functional interactions have been identified as unique to CS patient networks and can be attributed to both adaptive and maladaptive organization effects after the stroke. The importance of such phenomena both as possible prognostic factors and as contributors to patient rehabilitation remains unspecified yet. The exact underlying neurophysiological process and the extent that this is modulated by higher-order interactions is also not fully understood. The investigators used rich visual and tactile feedback, virtual reality environments (VRE), BCI controlled exoskeleton and robotic actuators and furthermore documented plasticity effects at the brain networks. Retraining brain circuits and promoting plasticity to restore body functions have been recognized among key principles of spinal cord repair by the US National Institute of Neurological Disorders and Stroke (US NIH/NINDS). Nonetheless, existing literature does not yet portray with precision the pathophysiological process and effect of CS on Central Nervous System (CNS) and the sensorimotor networks. Studies needed to address this issue (such as our study) should be considered, identifying specific questions to be answered through further investigation: a) how and why reorganization of CNS networks is established, b) how this reorganization evolves in time with respect to the severity and chronicity of the stroke, c) when can it be considered an adaptive or maladaptive evolution, and d) how can it be promoted or prevented respectively. The gained insight is expected to hold clinical relevance in preventing maladaptive plasticity after CS through individualized neuro-rehabilitation, as well as in the design of assistive technologies for CS patients. This HEROES study is a both a pre-clinical neurophysiological investigation on human CS patients that aims to advance basic knowledge on CS sequelae to CNS and also a translational implementation in clinical (rehabilitation) practice. Our analysis aims to eventually help produce a model of CNS function along different stages of stroke (Acute, Sub-acute, Chronic), during different activity (resting state, simple motor tasks, complex sensorimotor activity), and ideally being able to predict negative outcome versus possible Recovery. The HEROES project aims to investigate and promote dormant neuroplasticity after chronic stroke, a type of injury that causes hemiparesis, hemiplegia, tetraparesis or tetraplegia. Our protocol will deploy training in brain computer interfaces and robotic arms, virtual environments (brain-controlled virtual arms, avatars and augmented reality wearable robotics with sensors and actuators (gloves & jacket) and rich audio/visual/tactile stimuli along with serious gaming applications to enhance motivation. Visual and kinesthetic sensorimotor brain networks will also be studied using high density electroencephalography in order to demonstrate and monitor CNS plasticity.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 70
Est. completion date December 31, 2023
Est. primary completion date December 31, 2023
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - At least 14 years of age - Female & male stroke survivors and healthy individuals (age and gender matched) - Sufficient documentation of stroke in case of patients (clinical neurological examination, MRI) Exclusion Criteria: - Other neurological condition that has a possibility to significantly affect the neurological status of the participants (or) the ability to control a BCI (or) the neurophysiological recordings: - Traumatic brain injury - Central Nervous System tumors - Multiple Sclerosis - Amyotrophic Lateral Sclerosis - Parkinson's disease - Refractory Epilepsy - Other grave medical condition that could affect the participation (or) the safety of the participants: - Cardiac deficiency - Pulmonary deficiency - Hearing and visual impairments that can affect the participant's understanding of the --intervention and performance. - Illegal drug use - Chronic alcoholism

Study Design


Related Conditions & MeSH terms


Intervention

Device:
Brain-Computer Interface control of robotic arms with augmented reality
The participants will be trained to modulate self-paced Visual Motor Imagery (VMI) and Kinesthetic Motor Imagery (KMI) under EEG recording in order to achieve BCI-control of a custom-built bimanual arms robot (MERCURY v2.0). In KMI they will be asked to modulate brain waves in order to learn to control the BCI and in VMI they will additionally be projected a visual cue (representation of the intended movement). BCI will be used to control the arms in physical space as well as in an Augmented Reality Environment. Each participant will take part in 3 sessions
Serious game with augmented reality
The participants will don wearable robotics and use them as input to play a dojo-themed immersive serious game intended at tracking participants movement and presenting them with motor tasks to perform. The game will be played in a computer screen, as well as in an Augmented Reality Environment. Each participant will take part in 10 sessions

Locations

Country Name City State
Greece Laboratory of Medical Physics and Digital Innovation, AUTH Thessaloniki

Sponsors (1)

Lead Sponsor Collaborator
Aristotle University Of Thessaloniki

Country where clinical trial is conducted

Greece, 

Outcome

Type Measure Description Time frame Safety issue
Primary BCI control The ability of participants to modulate brainwave activity in order to achieve control of the BCI will be established. BCI control is evaluated as achieved or not (there are cases of BCI-illiteracy when the participants cannot modulate their brainwaves in order to control the BCI). 1 week
Primary Serious game performance (in-game scoring system) The ability of participants to control the wearables robotic jacket in order to complete in-game tasks and collect more points will be evaluated. The points will be gathered be matching the speed and position of the in-game task instructions while receiving assistance from electrical muscle stimulation. 2 weeks
Secondary Initial Functional Improvement (Greek translation of the Modified Rankin Scale (mRS-9Q) Daily functionality as measured by the Greek translation of the Modified Rankin Scale (mRS-9Q). The scale ranges from 0 to 5, where 0 is the best. 12 months
See also
  Status Clinical Trial Phase
Recruiting NCT04043052 - Mobile Technologies and Post-stroke Depression N/A
Recruiting NCT03869138 - Alternative Therapies for Improving Physical Function in Individuals With Stroke N/A
Completed NCT04034069 - Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial N/A
Completed NCT04101695 - Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects N/A
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Completed NCT00391378 - Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS) N/A
Recruiting NCT06204744 - Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial N/A
Active, not recruiting NCT06043167 - Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
Active, not recruiting NCT04535479 - Dry Needling for Spasticity in Stroke N/A
Completed NCT03985761 - Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke N/A
Recruiting NCT00859885 - International PFO Consortium N/A
Recruiting NCT06034119 - Effects of Voluntary Adjustments During Walking in Participants Post-stroke N/A
Completed NCT03622411 - Tablet-based Aphasia Therapy in the Chronic Phase N/A
Completed NCT01662960 - Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke N/A
Recruiting NCT05854485 - Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke N/A
Active, not recruiting NCT05520528 - Impact of Group Participation on Adults With Aphasia N/A
Completed NCT03366129 - Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
Completed NCT03281590 - Stroke and Cerebrovascular Diseases Registry
Completed NCT05805748 - Serious Game Therapy in Neglect Patients N/A
Recruiting NCT05621980 - Finger Movement Training After Stroke N/A

External Links