Stroke Clinical Trial
Official title:
Responders to Metronome-based Rhythmic Auditory Stimulation in Individuals Post-Stroke and Older Adults
Stroke is among the leading causes of long-term disability worldwide. Post-stroke neuromotor impairments are heterogeneous, yet often result in reduced walking ability characterized by slow, asymmetric, and unstable gait patterns. Rhythmic Auditory Stimulation (RAS) is an emerging rehabilitation approach that leverages auditory-motor synchronization to retrain neuromotor control of walking. Indeed, walking with RAS can enhance walking rhythmicity, gait quality, and speed. RAS is a potentially valuable tool for walking rehabilitation after stroke; however, despite extensive research evidence on the overall benefits of RAS in people with chronic stroke, the notable variability in the walking characteristics of individual patients is likely to influence the effectiveness of RAS intervention, and thus requires study. Furthermore, beyond stroke-related factors, age-related changes may also affect how well individuals post-stroke respond to RAS. This study aims to recruit 24 individuals post-stroke and 20 older adults to evaluate the effects of stroke- and age-related neuromotor impairment on RAS intervention. Each study participant will complete two six-minute walk tests: one without RAS (baseline) and the other with RAS delivered using a metronome. The investigators hypothesize that post-stroke individuals will, on average, exhibit a positive response to RAS intervention (i.e., walk farther and with greater gait automaticity (i.e., reduced stride time variability), with the degree of response predicted by specific baseline characteristics. Furthermore, the investigators anticipate that these walking enhancements will be accompanied by improvements in gait biomechanics and a reduction in the metabolic cost of walking. The investigators hypothesize that older adults will exhibit similar, but attenuated, effects of RAS.
Status | Recruiting |
Enrollment | 44 |
Est. completion date | March 1, 2024 |
Est. primary completion date | February 1, 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 80 Years |
Eligibility | Inclusion Criteria: - Be able to communicate with investigators clearly - The ability to walk without another individual supporting the person's body weight for at least 6 minutes. Assistive devices, such as a cane, are allowed. Exclusion Criteria: - Inability to communicate (as assessed by a licensed physical therapist) - Pain that impairs walking ability (as assessed by a licensed physical therapist) - Unexplained dizziness in the last 6 months (self-report) - Severe comorbidities that affect walking or may interfere with the ability to participate in the study (musculoskeletal, cardiovascular, pulmonary, and neurological) - More than 2 falls in the previous month Stroke-specific Inclusion Criteria: - at least 6 months post-stroke Older adults specific Inclusion Criteria: - 65 to 80 years of age |
Country | Name | City | State |
---|---|---|---|
United States | Boston University Neuromotor Recovery Laboratory | Boston | Massachusetts |
Lead Sponsor | Collaborator |
---|---|
Boston University Charles River Campus |
United States,
Arumukhom Revi D, De Rossi SMM, Walsh CJ, Awad LN. Estimation of Walking Speed and Its Spatiotemporal Determinants Using a Single Inertial Sensor Worn on the Thigh: From Healthy to Hemiparetic Walking. Sensors (Basel). 2021 Oct 21;21(21):6976. doi: 10.3390/s21216976. — View Citation
Arumukhom Revi, D., et.al. Propulsion Asymmetry Is Associated with an Inefficient Compensatory Ankle-to-Hip Redistribution of Positive Power after Stroke. Combined Sections Meeting 2023 (CSM), APTA
Awad L, Reisman D, Binder-Macleod S. Distance-Induced Changes in Walking Speed After Stroke: Relationship to Community Walking Activity. J Neurol Phys Ther. 2019 Oct;43(4):220-223. doi: 10.1097/NPT.0000000000000293. — View Citation
Bayat R, Barbeau H, Lamontagne A. Speed and temporal-distance adaptations during treadmill and overground walking following stroke. Neurorehabil Neural Repair. 2005 Jun;19(2):115-24. doi: 10.1177/1545968305275286. — View Citation
Bowden MG, Balasubramanian CK, Neptune RR, Kautz SA. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke. 2006 Mar;37(3):872-6. doi: 10.1161/01.STR.0000204063.75779.8d. Epub 2006 Feb 2. — View Citation
Combs SA, Van Puymbroeck M, Altenburger PA, Miller KK, Dierks TA, Schmid AA. Is walking faster or walking farther more important to persons with chronic stroke? Disabil Rehabil. 2013 May;35(10):860-7. doi: 10.3109/09638288.2012.717575. Epub 2012 Oct 5. — View Citation
Farris DJ, Hampton A, Lewek MD, Sawicki GS. Revisiting the mechanics and energetics of walking in individuals with chronic hemiparesis following stroke: from individual limbs to lower limb joints. J Neuroeng Rehabil. 2015 Feb 27;12:24. doi: 10.1186/s12984-015-0012-x. — View Citation
Flansbjer UB, Holmback AM, Downham D, Patten C, Lexell J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med. 2005 Mar;37(2):75-82. doi: 10.1080/16501970410017215. — View Citation
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021 Oct;20(10):795-820. doi: 10.1016/S1474-4422(21)00252-0. Epub 2021 Sep 3. — View Citation
Kuo AD, Donelan JM. Dynamic principles of gait and their clinical implications. Phys Ther. 2010 Feb;90(2):157-74. doi: 10.2522/ptj.20090125. Epub 2009 Dec 18. — View Citation
Puh U, Baer GD. A comparison of treadmill walking and overground walking in independently ambulant stroke patients: a pilot study. Disabil Rehabil. 2009;31(3):202-10. doi: 10.1080/09638280801903039. — View Citation
Reisman DS, Rudolph KS, Farquhar WB. Influence of speed on walking economy poststroke. Neurorehabil Neural Repair. 2009 Jul-Aug;23(6):529-34. doi: 10.1177/1545968308328732. Epub 2009 Jan 6. — View Citation
Revi DA, Alvarez AM, Walsh CJ, De Rossi SMM, Awad LN. Indirect measurement of anterior-posterior ground reaction forces using a minimal set of wearable inertial sensors: from healthy to hemiparetic walking. J Neuroeng Rehabil. 2020 Jun 29;17(1):82. doi: 10.1186/s12984-020-00700-7. — View Citation
Riley PO, Paolini G, Della Croce U, Paylo KW, Kerrigan DC. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait Posture. 2007 Jun;26(1):17-24. doi: 10.1016/j.gaitpost.2006.07.003. Epub 2006 Aug 14. — View Citation
Roelker SA, Bowden MG, Kautz SA, Neptune RR. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review. Gait Posture. 2019 Feb;68:6-14. doi: 10.1016/j.gaitpost.2018.10.027. Epub 2018 Oct 25. — View Citation
Roerdink M, Bank PJ, Peper CL, Beek PJ. Walking to the beat of different drums: practical implications for the use of acoustic rhythms in gait rehabilitation. Gait Posture. 2011 Apr;33(4):690-4. doi: 10.1016/j.gaitpost.2011.03.001. Epub 2011 Mar 31. — View Citation
Sawicki GS, Lewis CL, Ferris DP. It pays to have a spring in your step. Exerc Sport Sci Rev. 2009 Jul;37(3):130-8. doi: 10.1097/JES.0b013e31819c2df6. — View Citation
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022 Feb 22;145(8):e153-e639. doi: 10.1161/CIR.0000000000001052. Epub 2022 Jan 26. Erratum In: Circulation. 2022 Sep 6;146(10):e141. — View Citation
* Note: There are 18 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Other | Stroke vs. older adults: Stride time Variability in responders | difference in stride time variability with and without RAS (%) for responders across population | [RAS-Baseline] | |
Other | Stroke vs. older adults: Six Minute Walk test distance in responders | difference in total distance walked with and without RAS for responders across population | [RAS-Baseline] | |
Other | spatial temporal relationships over the 6MWT: Speed to Cadence | the difference in changes in a relationship (linear regression) between speed and cadence within population | [RAS-Baseline] | |
Other | spatial temporal relationships over the 6MWT: Speed to Stride length | the difference in changes in a relationship (linear regression) between speed and stride length within population | [RAS-Baseline] | |
Other | spatial temporal relationships over the 6MWT: Cadence to Stride length | the difference in changes in a relationship (linear regression) between cadence and stride length within population | [RAS-Baseline] | |
Primary | Six Minute Walk test distance | difference in total distance walked with and without RAS within population. (m) | [RAS-Baseline] | |
Primary | Stride time variability | difference in stride time variability with and without RAS (%) within population | [RAS-Baseline] | |
Secondary | Metabolic Cost of Transport | difference in energy cost of walking with and without RAS. Metabolic cost of transport is defined as metabolic energy (measured directly from COSMED) per kg of body weight (in mL/s/kg or W/kg) divided by the average speed during the six minute walk test within population (mL/kg/m or J/kg/m). | [RAS-Baseline] | |
Secondary | Ground Reaction Forces | difference in Anterior Posterior GRF within population -- including both peak and impulse (%bw) | [RAS-Baseline] | |
Secondary | speed changes over the 6MWT | the difference in changes in walking speed over the 6MWT within population (m/s) | [RAS-Baseline] | |
Secondary | stride length changes over the 6MWT | the difference in changes in stride length over the 6MWT within population(cm) | [RAS-Baseline] | |
Secondary | cadence changes over the 6MWT | the difference in changes in cadence over the 6MWT within population (steps/min) | [RAS-Baseline] |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04043052 -
Mobile Technologies and Post-stroke Depression
|
N/A | |
Recruiting |
NCT03869138 -
Alternative Therapies for Improving Physical Function in Individuals With Stroke
|
N/A | |
Completed |
NCT04101695 -
Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects
|
N/A | |
Completed |
NCT04034069 -
Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial
|
N/A | |
Terminated |
NCT03052712 -
Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies
|
N/A | |
Completed |
NCT00391378 -
Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS)
|
N/A | |
Recruiting |
NCT06204744 -
Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial
|
N/A | |
Active, not recruiting |
NCT06043167 -
Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
|
||
Active, not recruiting |
NCT04535479 -
Dry Needling for Spasticity in Stroke
|
N/A | |
Completed |
NCT03985761 -
Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke
|
N/A | |
Recruiting |
NCT00859885 -
International PFO Consortium
|
N/A | |
Recruiting |
NCT06034119 -
Effects of Voluntary Adjustments During Walking in Participants Post-stroke
|
N/A | |
Completed |
NCT03622411 -
Tablet-based Aphasia Therapy in the Chronic Phase
|
N/A | |
Completed |
NCT01662960 -
Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke
|
N/A | |
Recruiting |
NCT05854485 -
Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke
|
N/A | |
Active, not recruiting |
NCT05520528 -
Impact of Group Participation on Adults With Aphasia
|
N/A | |
Completed |
NCT03366129 -
Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
|
||
Completed |
NCT05805748 -
Serious Game Therapy in Neglect Patients
|
N/A | |
Completed |
NCT03281590 -
Stroke and Cerebrovascular Diseases Registry
|
||
Recruiting |
NCT05993221 -
Deconstructing Post Stroke Hemiparesis
|