Stroke Clinical Trial
Official title:
Determining the Effects of Increased Demands for Voluntary Adjustments on the Neuromuscular Control of Walking Post-stroke
People post-stroke retain the capacity to modify walking patterns explicitly using biofeedback and implicitly when encountering changes in the walking environment. This proposal will assess changes in muscle activation patterns associated with walking modifications driven explicitly vs. implicitly, to determine whether individuals generate different amounts of co-contraction during explicit vs. implicit walking modifications. Understanding how walking modifications driven explicitly vs. implicitly influence co-contraction will allow the investigators to identify approaches that can more effectively restore muscle activation toward pre-stroke patterns, promoting mechanism-based recovery of walking function.
This proposal aims to determine the effects of explicitly driven or implicitly driven walking modifications on muscle activation patterns and co-contraction post-stroke. This work is significant, as studies have shown that muscle activation patterns after neurologic injury cannot generate walking kinematics comparable to those seen in neurotypical individuals; this finding implies that to attain true walking recovery after neurologic injury, interventions should aim to restore the muscle activations underlying walking behaviors. Here, the researchers first explore muscle activations during walking using biofeedback to guide explicit modification of walking patterns, which is a common approach used in clinical and research interventions for walking retraining. The hypothesis is that explicit walking modifications might be detrimental at a muscle activation level as they engage cortical pathways for voluntary control that have been interrupted by the stroke lesion, resulting in increased muscle co-contraction. Co-contraction hinders true recovery as it impairs the ability to selectively control different segments during walking, resulting in overreliance on compensatory patterns. Researchers will also explore muscle activation patterns during implicit walking modifications. Researchers will use external modifications in the walking environment, mainly split-belt adaptation followed by tied belt walking, to assess if implicit modifications of walking that rely less on cortical neural control are associated with levels of cocontraction comparable to neurotypical controls-an indication that implicitly-mediated modifications could be a more effective approach to restore muscle activation patterns during walking post-stroke. In this study, researchers will assess co-contraction during walking in people post-stroke as the patient reduces asymmetry in step lengths guided by explicit biofeedback (Aim 1) or implicitly following split-belt adaptation and washout (Aim 2). Results from this study will identify the tasks and conditions that can reduce cocontraction to promote restoration of neuromuscular control post-stroke. This proposal will aid develop objective markers of treatment response and functional progress that predict rehabilitation treatment response and enable the tailoring of interventions to the needs, abilities, and resources of the person with disability. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04043052 -
Mobile Technologies and Post-stroke Depression
|
N/A | |
Recruiting |
NCT03869138 -
Alternative Therapies for Improving Physical Function in Individuals With Stroke
|
N/A | |
Completed |
NCT04101695 -
Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects
|
N/A | |
Completed |
NCT04034069 -
Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial
|
N/A | |
Terminated |
NCT03052712 -
Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies
|
N/A | |
Completed |
NCT00391378 -
Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS)
|
N/A | |
Recruiting |
NCT06204744 -
Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial
|
N/A | |
Active, not recruiting |
NCT06043167 -
Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
|
||
Active, not recruiting |
NCT04535479 -
Dry Needling for Spasticity in Stroke
|
N/A | |
Completed |
NCT03985761 -
Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke
|
N/A | |
Recruiting |
NCT00859885 -
International PFO Consortium
|
N/A | |
Completed |
NCT03622411 -
Tablet-based Aphasia Therapy in the Chronic Phase
|
N/A | |
Completed |
NCT01662960 -
Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke
|
N/A | |
Recruiting |
NCT05854485 -
Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke
|
N/A | |
Active, not recruiting |
NCT05520528 -
Impact of Group Participation on Adults With Aphasia
|
N/A | |
Completed |
NCT03366129 -
Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
|
||
Completed |
NCT03281590 -
Stroke and Cerebrovascular Diseases Registry
|
||
Completed |
NCT05805748 -
Serious Game Therapy in Neglect Patients
|
N/A | |
Recruiting |
NCT05993221 -
Deconstructing Post Stroke Hemiparesis
|
||
Recruiting |
NCT05621980 -
Finger Movement Training After Stroke
|
N/A |