Stroke Clinical Trial
Official title:
Changes in EEG Microestates After Combined Treatment od Tdcs and Dual-task Training in Stroke Patients: a Cross-roads, Sham-controlled,Double-blind Clinical Trial
Stroke has been considered one of the main causes of long-term disability in the adult population. Technological advances in the neurological area have been observed in the last decades, which accentuates the interest in promoting non-invasive stimulation techniques, capable of modulating brain polarity, where among these techniques is the transcranial direct current stimulation - tDCS. Previous studies analyzed by systematic reviews suggest that the effects of tDCS may vary between individuals, where some stroke patients may not receive any additional benefit from the therapy. Thus, it is necessary to use a biomarker that can choose those that will possibly benefit from the electric current. Therefore, the aim of this study is to identify the dynamics of EEG microstates after tDCS and dual-task training in subjects after chronic stroke, as well as to assess how microstate parameters in stroke patients are altered by tDCS and dual-task training. at three different moments (Stimulation in M1 + dual-task training; Stimulation in M1 and DLPF + dual-task training; Sham stimulation) and to observe whether the microstates encode information that reflects the motor and/or cognitive capacity of these patients.
Cerebrovascular Accident (CVA) has been considered one of the main causes of long-term disability in the adult population. Stroke usually causes deficits such as asymmetrical muscle weakness between limbs, impaired proprioceptive ability, sensory loss, vision problems, and spasticity. In post-stroke patients, it is believed that the interhemispheric balance may be altered as a result of brain injury, the theory of interhemispheric competition is widely used as a theoretical basis for the application of non-invasive neuromodulatory techniques. Technological advances in the neurological field have been seen in recent decades, which accentuates the interest in promoting non-invasive stimulation techniques, capable of modulating brain polarity, where among these techniques is transcranial direct current stimulation - tDCS. Previous studies analyzed by systematic reviews suggest that the effects of tDCS may vary between subjects, where some stroke patients may not receive any additional benefit from the therapy. Thus, it is necessary to use a biomarker that can choose those who will possibly benefit from the electric current. Therefore, the aim of this study is to identify the dynamics of EEG microstates after tDCS and dual-task training in subjects after chronic stroke, as well as to assess how microstate parameters in stroke patients are altered by tDCS and dual-task training at three different times (Stimulation in M1 + dual-task training; Stimulation in M1 and DLPF + dual-task training; Sham stimulation) and observe whether the microstates encode information that reflects the motor and/or cognitive capacity of these patients. For this, a clinical trial, sham-controlled, double-blind and randomized, of crossover type, involving patients with stroke in chronic stage will be carried out. Participants will be submitted to three sessions, each session consisting of a different condition, namely: first condition (anodic tDCS) participants will receive real current over the primary motor area (M1); second condition (dualsite tDCS) participants will receive real current over M1 and dorsolateral prefrontal area (DLPFC) and third condition (sham tDCS) participants will receive simulated stimulation. A 3-minute resting EEG will be collected from each participant, and they will be instructed not to actively engage in any cognitive or mental activity. In all stimulation sessions, evaluations will be carried out, the evaluated outcomes will be: change in EEG microstates, cognitive function and motor function. Statistical analyzes will be performed using SPSS software (Statistical Package for Social Sciences - SPSS Inc, Chicago IL, USA for Windows, Version 20.0) and MATLAB (9.2.0 (MathWorks, Inc., Natick, MA) with a defined level of significance at p<0.05. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04043052 -
Mobile Technologies and Post-stroke Depression
|
N/A | |
Recruiting |
NCT03869138 -
Alternative Therapies for Improving Physical Function in Individuals With Stroke
|
N/A | |
Completed |
NCT04101695 -
Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects
|
N/A | |
Completed |
NCT04034069 -
Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial
|
N/A | |
Terminated |
NCT03052712 -
Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies
|
N/A | |
Completed |
NCT00391378 -
Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS)
|
N/A | |
Recruiting |
NCT06204744 -
Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial
|
N/A | |
Active, not recruiting |
NCT06043167 -
Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
|
||
Active, not recruiting |
NCT04535479 -
Dry Needling for Spasticity in Stroke
|
N/A | |
Completed |
NCT03985761 -
Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke
|
N/A | |
Recruiting |
NCT00859885 -
International PFO Consortium
|
N/A | |
Recruiting |
NCT06034119 -
Effects of Voluntary Adjustments During Walking in Participants Post-stroke
|
N/A | |
Completed |
NCT03622411 -
Tablet-based Aphasia Therapy in the Chronic Phase
|
N/A | |
Completed |
NCT01662960 -
Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke
|
N/A | |
Recruiting |
NCT05854485 -
Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke
|
N/A | |
Active, not recruiting |
NCT05520528 -
Impact of Group Participation on Adults With Aphasia
|
N/A | |
Completed |
NCT03366129 -
Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
|
||
Completed |
NCT03281590 -
Stroke and Cerebrovascular Diseases Registry
|
||
Completed |
NCT05805748 -
Serious Game Therapy in Neglect Patients
|
N/A | |
Recruiting |
NCT05993221 -
Deconstructing Post Stroke Hemiparesis
|