Stroke Clinical Trial
Official title:
The PROMOTOER: a BCI -Based Intervention That Promotes Upper Limb Functional Motor Recovery. A Randomized Clinical Trial to Test Long-term Efficacy and to Identify Determinants of Response to Intervention in Subacute Stroke Patients
Stroke is a leading cause of long-term disability. Cost-effective post-stroke rehabilitation programs are critically needed. Brain-Computer Interface (BCI) systems which enable the modulation of EEG sensorimotor rhythms are promising tools to promote early improvements of motor rehabilitation outcomes after stroke. This project intends to boost this BCI application beyond the state of art by providing: i) evidence for a short/long-term efficacy in enhancing post-stroke functional hand motor recovery; and ii) quantifiable indices (beyond clinical scales) sensitive to stroke participant's response to a Promotoer (BCI system compatible with clinical setting) -based intervention. To these aims, a longitudinal randomized controlled trial will be performed in which, subacute stroke participants will undergo a Promotoer- assisted hand motor imagery training.
Stroke is a major public health and social care concern worldwide, being the leading cause of long-term disability in adults. The upper limb motor impairment commonly persists after stroke affecting patients' everyday life functional independence. Despite the intensive rehabilitation, the variability in the nature and the extent of upper limb recovery remains a crucial factor effecting rehabilitation outcomes. Electroencephalography (EEG) -based Brain Computer Interface (BCI) technology is a potential tool to promote functional motor recovery of upper limbs after stroke as shown in several randomized controlled trials. The investigators' multidisciplinary team was successful in designing, implementing and clinically validating a sensorimotor rhythm-based BCI combined with realistic visual feedback of upper limb to support hand motor imagery (MI) practice in stroke participants. However, important questions remain to be addressed to translate BCI in clinical practice such as defining whether the expected BCI-induced early improvements in functional motor outcomes can be sustained in a long-term after stroke. This requires advancements in the knowledge on brain functional re-organization after stroke and how this re-organization would correlate with the functional motor outcome (evidence-base medicine). Last but not least, the definition of the determinants of the patient response to-treatment is paramount to optimize the process of personalized medicine in rehabilitation. The fundamental of this project stems from the investigators' previous findings on the efficacy of BCI-assisted MI training in subacute stroke participants. These promising findings corroborated the idea that a relatively low-cost technique (i.e. EEG-based BCI) can be exploited to deliver a rehabilitative intervention (in this case MI) and prompted the research team to undertake a further translational effort by implementing an all-in-one BCI-supported MI training station- the Promotoer. In this project, the investigators will provide evidence for a persistency (up to 6 months) of the significant early improvement of hand motor function induced by the BCI-assisted MI training operated via the Promotoer. Task-specific training was recently reported to induce long-term improvements (6 months follow-up) in arm motor function after stroke. Thus, the hypothesis is that the BCI-based rewarding of hand MI tasks would promote long-lasting retention of early induced positive effect on motor performance with respect to MI task practiced in an open loop condition (i.e., without BCI). Further hypothesis is that such clinical improvement would be sustained by a long-lasting neuroplasticity changes that would be harnessed by the BCI -based intervention. This hypothesis rises from current evidence for an early enhancement of post-stroke plastic changes enabled by BCI- based trainings. To test this hypothesis, a longitudinal assessment of the brain network organization derived from advanced EEG signal processing will be performed. The heterogeneity of stroke makes prediction of treatment responder a great challenge. The investigators hypothesize that the longitudinal functional and neurophysiology assessment over 6 months from the intervention will allow for insights in biomarkers and potential predictors of stroke participants' response to the Promotoer training. Some of the well-recognized factors contributing to functional motor recovery after stroke such as the relation between lesion characteristics and patterns of post-stroke motor cortical re-organization (e.g., ipsilesional/contralesional primary and non-primary motor areas; cortico-spinal tract integrity, severity of motor deficits at baseline) will be taken into account. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04043052 -
Mobile Technologies and Post-stroke Depression
|
N/A | |
Recruiting |
NCT03869138 -
Alternative Therapies for Improving Physical Function in Individuals With Stroke
|
N/A | |
Completed |
NCT04034069 -
Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial
|
N/A | |
Completed |
NCT04101695 -
Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects
|
N/A | |
Terminated |
NCT03052712 -
Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies
|
N/A | |
Completed |
NCT00391378 -
Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS)
|
N/A | |
Recruiting |
NCT06204744 -
Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial
|
N/A | |
Active, not recruiting |
NCT06043167 -
Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
|
||
Active, not recruiting |
NCT04535479 -
Dry Needling for Spasticity in Stroke
|
N/A | |
Completed |
NCT03985761 -
Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke
|
N/A | |
Recruiting |
NCT00859885 -
International PFO Consortium
|
N/A | |
Recruiting |
NCT06034119 -
Effects of Voluntary Adjustments During Walking in Participants Post-stroke
|
N/A | |
Completed |
NCT03622411 -
Tablet-based Aphasia Therapy in the Chronic Phase
|
N/A | |
Completed |
NCT01662960 -
Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke
|
N/A | |
Recruiting |
NCT05854485 -
Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke
|
N/A | |
Active, not recruiting |
NCT05520528 -
Impact of Group Participation on Adults With Aphasia
|
N/A | |
Completed |
NCT03366129 -
Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
|
||
Completed |
NCT03281590 -
Stroke and Cerebrovascular Diseases Registry
|
||
Completed |
NCT05805748 -
Serious Game Therapy in Neglect Patients
|
N/A | |
Recruiting |
NCT05993221 -
Deconstructing Post Stroke Hemiparesis
|