Stroke Clinical Trial
Official title:
Conivaptan for the Reduction of Cerebral Edema in Intracerebral Hemorrhage- A Safety and Tolerability Study
Verified date | April 2020 |
Source | Allina Health System |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The goal of this study is to preliminarily determine/estimate feasibility and whether
frequent and early conivaptan use, at a dose currently determined to be safe (i.e.,
40mg/day), is safe and well-tolerated in patients with cerebral edema from intracerebral
hemorrhage (ICH) and pressure (ICP). A further goal is to preliminarily estimate whether
conivaptan at this same dose can reduce cerebral edema (CE) in these same patients. This
study is also an essential first step in understanding the role of conivaptan in CE
management.
Hypothesis: The frequent and early use of conivaptan at 40mg/day will be safe and
well-tolerated, and also reduce cerebral edema, in patients with intracerebral hemorrhage and
pressure.
Status | Completed |
Enrollment | 7 |
Est. completion date | April 15, 2019 |
Est. primary completion date | February 12, 2019 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 19 Years to 79 Years |
Eligibility |
Inclusion Criteria: 1. Age >18 years old and < 80 years. 2. Diagnosis of primary ICH > 20 cc in volume. 3. Enrollment within 48 hours from initial symptoms. 4. Signed informed consent from the patient or obtained via their legally authorized representative (if the patient is not able to sign the informed consent themselves). The patient's decisional capacity to either provide or refuse consent will be determined using the Glasgow Coma Scale (GCS), which is being assessed at baseline and at 24 hours (+/-6hrs) after enrollment. A potential study participant with a GCS > 14 will be asked to provide their own initial study consent. A GCS = 14 would indicate the need to pursue consent via legally authorized representative. Exclusion Criteria: 1. Current need for renal replacement therapy (RRT). 2. Glomerular filtration rate (GFR) of <30 mL/minute at time of admission. 3. Participation in another study for ICH or intraventricular hemorrhage. 4. ICH related to infection, thrombolysis, subarachnoid hemorrhage, trauma or tumor. 5. Presence of HIV or active fungal infection that is known based on information in the electronic medical record (EMR). 6. Continued use of digoxin or amlodipine (as recommended by the manufacturer due to cytochrome P450 3A4 "CYP3A" inhibition). 7. Active hepatic failure as defined by aspartate aminotransferase (AST) >160 units/L and/or alanine transaminase (ALT) >180 units/L, or total bilirubin levels greater than four times normal levels (>4.8mg/dL). 8. Serum Na+> 145 mmol/L (admission labs or any time prior to recruitment/enrollment). 9. Unable to receive conivaptan based on contraindications indicated by the manufacturer. 10. Pregnant or lactating females. 11. Not expected to survive within 48 hours of admission, or a presumed diagnosis of brain death. |
Country | Name | City | State |
---|---|---|---|
United States | United Hospital | Saint Paul | Minnesota |
Lead Sponsor | Collaborator |
---|---|
Jesse Corry |
United States,
Adams Jr HP. Handbook of Cerebrovascular Disease. Ed.2 Marcel Dekker, Inc, New York, 2005
Annane D, Decaux G, Smith N; Conivaptan Study Group. Efficacy and safety of oral conivaptan, a vasopressin-receptor antagonist, evaluated in a randomized, controlled trial in patients with euvolemic or hypervolemic hyponatremia. Am J Med Sci. 2009 Jan;337(1):28-36. doi: 10.1097/MAJ.0b013e31817b8148. — View Citation
Bulger EM, May S, Brasel KJ, Schreiber M, Kerby JD, Tisherman SA, Newgard C, Slutsky A, Coimbra R, Emerson S, Minei JP, Bardarson B, Kudenchuk P, Baker A, Christenson J, Idris A, Davis D, Fabian TC, Aufderheide TP, Callaway C, Williams C, Banek J, Vaillancourt C, van Heest R, Sopko G, Hata JS, Hoyt DB; ROC Investigators. Out-of-hospital hypertonic resuscitation following severe traumatic brain injury: a randomized controlled trial. JAMA. 2010 Oct 6;304(13):1455-64. doi: 10.1001/jama.2010.1405. — View Citation
Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T; Global Neurotrauma Research Group. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012 Dec 27;367(26):2471-81. doi: 10.1056/NEJMoa1207363. Epub 2012 Dec 12. Erratum in: N Engl J Med. 2013 Dec 19;369(25):2465. — View Citation
Corry JJ, Varelas P, Abdelhak T, Morris S, Hawley M, Hawkins A, Jankowski M. Variable change in renal function by hypertonic saline. World J Crit Care Med. 2014 May 4;3(2):61-7. doi: 10.5492/wjccm.v3.i2.61. eCollection 2014 May 4. — View Citation
Corry JJ. The use of targeted temperature management for elevated intracranial pressure. Curr Neurol Neurosci Rep. 2014 Jun;14(6):453. doi: 10.1007/s11910-014-0453-9. Review. — View Citation
Corry JJ. Use of hypothermia in the intensive care unit. World J Crit Care Med. 2012 Aug 4;1(4):106-22. doi: 10.5492/wjccm.v1.i4.106. eCollection 2012 Aug 4. Review. — View Citation
Costello-Boerrigter LC, Boerrigter G, Burnett JC Jr. Pharmacology of vasopressin antagonists. Heart Fail Rev. 2009 Jun;14(2):75-82. doi: 10.1007/s10741-008-9108-8. Epub 2008 Sep 3. Review. — View Citation
Cumberland Pharmaceuticals, Inc. Vaprisol ® (conivaptan hydrochloride injection) [package insert]. Nashville, TN, April 2014.
Dhar R, Murphy-Human T. A bolus of conivaptan lowers intracranial pressure in a patient with hyponatremia after traumatic brain injury. Neurocrit Care. 2011 Feb;14(1):97-102. doi: 10.1007/s12028-010-9366-x. — View Citation
Diringer MN, Edwards DF. Admission to a neurologic/neurosurgical intensive care unit is associated with reduced mortality rate after intracerebral hemorrhage. Crit Care Med. 2001 Mar;29(3):635-40. — View Citation
FDA. http://www.fda.gov/drugs/drugsafety/drugshortages/ucm050792.htm (2010)
Fernández N, Martínez MA, García-Villalón AL, Monge L, Diéguez G. Cerebral vasoconstriction produced by vasopressin in conscious goats: role of vasopressin V(1) and V(2) receptors and nitric oxide. Br J Pharmacol. 2001 Apr;132(8):1837-44. — View Citation
Galton C, Deem S, Yanez ND, Souter M, Chesnut R, Dagal A, Treggiari M. Open-label randomized trial of the safety and efficacy of a single dose conivaptan to raise serum sodium in patients with traumatic brain injury. Neurocrit Care. 2011 Jun;14(3):354-60. doi: 10.1007/s12028-011-9525-8. — View Citation
Gazitúa S, Scott JB, Chou CC, Haddy FJ. Effect of osmolarity on canine renal vascular resistance. Am J Physiol. 1969 Oct;217(4):1216-23. — View Citation
Gebel JM Jr, Jauch EC, Brott TG, Khoury J, Sauerbeck L, Salisbury S, Spilker J, Tomsick TA, Duldner J, Broderick JP. Natural history of perihematomal edema in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke. 2002 Nov;33(11):2631-5. — View Citation
Grände PO, Romner B. Osmotherapy in brain edema: a questionable therapy. J Neurosurg Anesthesiol. 2012 Oct;24(4):407-12. doi: 10.1097/01.ana.0000419730.29492.8b. Review. — View Citation
Hays A, Lazaridid C, et al. Osmotherapy in clinical practice: A survey of practitioners. Abstract Supplement. Volume 13. Neurocritical Care. 2010.
Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke. 2001 Apr;32(4):891-7. — View Citation
Kleindienst A, Fazzina G, Dunbar JG, Glisson R, Marmarou A. Protective effect of the V1a receptor antagonist SR49059 on brain edema formation following middle cerebral artery occlusion in the rat. Acta Neurochir Suppl. 2006;96:303-6. — View Citation
Li YH, Sun SQ. [Expression of aquaporin - 4 protein in brain from rats with hemorrhagic edema]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2003 Sep;15(9):538-41. Chinese. — View Citation
Liu X, Nakayama S, Amiry-Moghaddam M, Ottersen OP, Bhardwaj A. Arginine-vasopressin V1 but not V2 receptor antagonism modulates infarct volume, brain water content, and aquaporin-4 expression following experimental stroke. Neurocrit Care. 2010 Feb;12(1):124-31. doi: 10.1007/s12028-009-9277-x. — View Citation
Marik PE, Rivera R. Therapeutic effect of conivaptan bolus dosing in hyponatremic neurosurgical patients. Pharmacotherapy. 2013 Jan;33(1):51-5. doi: 10.1002/phar.1169. — View Citation
Mayer SA, Sacco RL, Shi T, Mohr JP. Neurologic deterioration in noncomatose patients with supratentorial intracerebral hemorrhage. Neurology. 1994 Aug;44(8):1379-84. — View Citation
McGraw CP, Howard G. Effect of mannitol on increased intracranial pressure. Neurosurgery. 1983 Sep;13(3):269-71. — View Citation
Migliati ER, Amiry-Moghaddam M, Froehner SC, Adams ME, Ottersen OP, Bhardwaj A. Na(+)-K (+)-2Cl (-) cotransport inhibitor attenuates cerebral edema following experimental stroke via the perivascular pool of aquaporin-4. Neurocrit Care. 2010 Aug;13(1):123-31. doi: 10.1007/s12028-010-9376-8. — View Citation
Murphy T, Dhar R, Diringer M. Conivaptan bolus dosing for the correction of hyponatremia in the neurointensive care unit. Neurocrit Care. 2009;11(1):14-9. doi: 10.1007/s12028-008-9179-3. Epub 2009 Jan 4. — View Citation
Naidech AM, Paparello J, Liebling SM, Bassin SL, Levasseur K, Alberts MJ, Bernstein RA, Muro K. Use of Conivaptan (Vaprisol) for hyponatremic neuro-ICU patients. Neurocrit Care. 2010 Aug;13(1):57-61. doi: 10.1007/s12028-010-9379-5. Erratum in: Neurocrit Care. 2011 Aug;15(1):210. Leibling, Storm M [corrected to Liebling, Storm M]. — View Citation
Nathan BR. Cerebral correlates of hyponatremia. Neurocrit Care. 2007;6(1):72-8. — View Citation
National PBM Drug Monograph. Conivaptan Hydrochloride Injection (Vaprisol). 2006. [Appendix 6]
Nau R, Desel H, Lassek C, Thiel A, Schinschke S, Rössing R, Kolenda H, Prange HW. Slow elimination of mannitol from human cerebrospinal fluid. Eur J Clin Pharmacol. 1997;53(3-4):271-4. — View Citation
Onuoho A, Human T, Dringer MN, Dhar R. Predictors of the Response to a Bolus of Conivaptan in Patients with Acute Hyponatremia. Abstract Supplement. Volume 13. Neurocritical Care. 2010.
Rosenberg GA, Scremin O, Estrada E, Kyner WT. Arginine vasopressin V1-antagonist and atrial natriuretic peptide reduce hemorrhagic brain edema in rats. Stroke. 1992 Dec;23(12):1767-73; discussion 1773-4. Erratum in: Stroke 1993 Jun;24(6):913. — View Citation
Ross WD. The right and the good. Hackett Pub Co Inc (July 1988). ISBN-13: 978-0872200586.
Sheth KN, Kimberly WT, Elm JJ, Kent TA, Mandava P, Yoo AJ, Thomalla G, Campbell B, Donnan GA, Davis SM, Albers GW, Jacobson S, Simard JM, Stern BJ. Pilot study of intravenous glyburide in patients with a large ischemic stroke. Stroke. 2014 Jan;45(1):281-3. doi: 10.1161/STROKEAHA.113.003352. Epub 2013 Nov 5. — View Citation
Strandvik GF. Hypertonic saline in critical care: a review of the literature and guidelines for use in hypotensive states and raised intracranial pressure. Anaesthesia. 2009 Sep;64(9):990-1003. doi: 10.1111/j.1365-2044.2009.05986.x. Review. — View Citation
Sun Z, Zhao Z, Zhao S, Sheng Y, Zhao Z, Gao C, Li J, Liu X. Recombinant hirudin treatment modulates aquaporin-4 and aquaporin-9 expression after intracerebral hemorrhage in vivo. Mol Biol Rep. 2009 May;36(5):1119-27. doi: 10.1007/s11033-008-9287-3. Epub 2008 Jun 24. — View Citation
Szmydynger-Chodobska J, Chung I, Kozniewska E, Tran B, Harrington FJ, Duncan JA, Chodobski A. Increased expression of vasopressin v1a receptors after traumatic brain injury. J Neurotrauma. 2004 Aug;21(8):1090-102. — View Citation
Taya K, Gulsen S, Okuno K, Prieto R, Marmarou CR, Marmarou A. Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema. Acta Neurochir Suppl. 2008;102:425-9. — View Citation
Taylor TN, Davis PH, Torner JC, Holmes J, Meyer JW, Jacobson MF. Lifetime cost of stroke in the United States. Stroke. 1996 Sep;27(9):1459-66. Review. — View Citation
Thiex R, Tsirka SE. Brain edema after intracerebral hemorrhage: mechanisms, treatment options, management strategies, and operative indications. Neurosurg Focus. 2007 May 15;22(5):E6. Review. — View Citation
Trabold R, Krieg S, Schöller K, Plesnila N. Role of vasopressin V(1a) and V2 receptors for the development of secondary brain damage after traumatic brain injury in mice. J Neurotrauma. 2008 Dec;25(12):1459-65. doi: 10.1089/neu.2008.0597. — View Citation
Venkatasubramanian C, Mlynash M, Finley-Caulfield A, Eyngorn I, Kalimuthu R, Snider RW, Wijman CA. Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke. 2011 Jan;42(1):73-80. doi: 10.1161/STROKEAHA.110.590646. Epub 2010 Dec 16. — View Citation
Verbalis JG, Zeltser D, Smith N, Barve A, Andoh M. Assessment of the efficacy and safety of intravenous conivaptan in patients with euvolaemic hyponatraemia: subgroup analysis of a randomized, controlled study. Clin Endocrinol (Oxf). 2008 Jul;69(1):159-68. Epub 2008 Jul 1. — View Citation
Volbers B, Willfarth W, Kuramatsu JB, Struffert T, Dörfler A, Huttner HB, Schwab S, Staykov D. Impact of Perihemorrhagic Edema on Short-Term Outcome After Intracerebral Hemorrhage. Neurocrit Care. 2016 Jun;24(3):404-12. doi: 10.1007/s12028-015-0185-y. — View Citation
Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983 Mar;71(3):726-35. — View Citation
Wright WL, Asbury WH, Gilmore JL, Samuels OB. Conivaptan for hyponatremia in the neurocritical care unit. Neurocrit Care. 2009;11(1):6-13. doi: 10.1007/s12028-008-9152-1. Epub 2008 Nov 12. — View Citation
Yool AJ, Brown EA, Flynn GA. Roles for novel pharmacological blockers of aquaporins in the treatment of brain oedema and cancer. Clin Exp Pharmacol Physiol. 2010 Apr;37(4):403-9. doi: 10.1111/j.1440-1681.2009.05244.x. Epub 2009 Jun 29. Review. — View Citation
Zandor section of the Handbook of Experimental Pharmacology, Editors-in-chief: Starke, Klaus, Hofmann, Franz B. ISSN: 0171-2004.
Zeltser D, Rosansky S, van Rensburg H, Verbalis JG, Smith N; Conivaptan Study Group. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol. 2007;27(5):447-57. Epub 2007 Jul 26. — View Citation
Zeynalov E, Chen CH, Froehner SC, Adams ME, Ottersen OP, Amiry-Moghaddam M, Bhardwaj A. The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med. 2008 Sep;36(9):2634-40. doi: 10.1097/CCM.0b013e3181847853. — View Citation
* Note: There are 51 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Patient Tolerance of Conivaptan | The number of participants with abnormal seizure activity and/or abnormal lab values and/or increase in infection rate and/or any drug-related adverse events. | Baseline to 168 hours post-enrollment | |
Secondary | In-hospital Mortality | All-cause deaths during hospitalization | Enrollment through hospital discharge, up to 3 weeks | |
Secondary | Change in Cerebral Edema | Changes in cerebral edema (CE) as measured on CT. Goal is a -5 to -10% change in CE over time. Change will be measured both as absolute change in volume, calculated as the final volume minus the baseline volume measure and converted to a percentage of the baseline volume measure. | Baseline to 168 hours post-enrollment | |
Secondary | Cost | Cost as measured by length of stay in the neuro ICU. | Enrollment through hospital discharge, up to 3 weeks | |
Secondary | Cost | Cost as measured by: Need for external ventricular drain (EVD)/bolt or surgical procedures (craniectomy, clot evacuation,VPS) for reduction/management of CE. Need for central venous lines, arterial lines, peripherally inserted central venous catheter (PICC) lines, tracheostomy/percutaneous endoscopic gastrostomies (PEGs). Number of patients requiring a ventilator. |
Baseline to 168 hours post-enrollment | |
Secondary | Modified Rankin Scale (mRS) Score | Modified Rankin Scale (0 to 6) at discharge from the hospital. A score of 0 indicates no disability and a score of 6 indicates the patient died. Functional independence is defined as a score of 2 or less. | At discharge from ICU and from hospital, up to 3 weeks |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04043052 -
Mobile Technologies and Post-stroke Depression
|
N/A | |
Recruiting |
NCT03869138 -
Alternative Therapies for Improving Physical Function in Individuals With Stroke
|
N/A | |
Completed |
NCT04101695 -
Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects
|
N/A | |
Completed |
NCT04034069 -
Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial
|
N/A | |
Terminated |
NCT03052712 -
Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies
|
N/A | |
Completed |
NCT00391378 -
Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS)
|
N/A | |
Recruiting |
NCT06204744 -
Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial
|
N/A | |
Active, not recruiting |
NCT06043167 -
Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
|
||
Active, not recruiting |
NCT04535479 -
Dry Needling for Spasticity in Stroke
|
N/A | |
Completed |
NCT03985761 -
Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke
|
N/A | |
Recruiting |
NCT00859885 -
International PFO Consortium
|
N/A | |
Recruiting |
NCT06034119 -
Effects of Voluntary Adjustments During Walking in Participants Post-stroke
|
N/A | |
Completed |
NCT03622411 -
Tablet-based Aphasia Therapy in the Chronic Phase
|
N/A | |
Completed |
NCT01662960 -
Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke
|
N/A | |
Recruiting |
NCT05854485 -
Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke
|
N/A | |
Active, not recruiting |
NCT05520528 -
Impact of Group Participation on Adults With Aphasia
|
N/A | |
Completed |
NCT03366129 -
Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
|
||
Completed |
NCT05805748 -
Serious Game Therapy in Neglect Patients
|
N/A | |
Completed |
NCT03281590 -
Stroke and Cerebrovascular Diseases Registry
|
||
Recruiting |
NCT05621980 -
Finger Movement Training After Stroke
|
N/A |