View clinical trials related to Stroke/Brain Attack.
Filter by:The goal of this longitudinal, single-subject study is to investigate the role of motivation in music therapy for stroke patients within the subacute phase, who experience upper limb and/or attention deficits. The main questions it aims to answer are: - Does music therapy increase patient's motivation to rehabilitate? - Do increases in motivation correlate with functional improvements, in particular upper limb and/or attention skills? Participants will receive up to 9 music therapy sessions within 3-5 weeks, with functional assessments before and after each period. Each participant serves as their own comparison: researchers will compare a period with standard care only (control phase) to a period with music therapy plus standard care (intervention phase), the order of which will be randomized in advance.
Multi-center, randomized, sham-controlled, double-blind, longitudinal, experimental clinical study to investigate functional recovery effects on the upper limb in chronic stroke patients and the accompanying neural plasticity mechanisms after the application of a brain-computer interface (BCI)-driven functional electrical stimulation (FES) therapy supported by an assistive device (hand orthosis). All the equipment used during the study will be applied in compliance with the indications and methods of use for which it is authorized. Therefore, the results will not extend the indications for the use of the equipment and will not explicitly target industrial development. The study is non-profit and is aimed at improving clinical practice. The study involves two clinical centers. The promoting center is the Vipiteno Neurorehabilitation Department, Italy. The aggregate experimentation center is the Neurology Department of Hochzirl Hospital, Austria. The University of Essex, United Kingdom is the technology provider and data analysis center.
This pilot study will investigate the safety, feasibility, tolerability, and preliminary efficacy of accelerated high-dose repetitive transcranial magnetic stimulation (rTMS) targeting the medial prefrontal cortex (mPFC) to address apathy symptoms in individuals with chronic stroke.
Quantitative EEG (qEEG) has been used as an effective tool in the diagnosis and prognosis of brain-related diseases. In the literature, a variety of qEEG parameters have been proven informative in the prognosis of stroke. In addition, it has been demonstrated that changes in certain qEEG parameters during traditional/task-specific rehabilitation approaches are correlated with clinical outcomes of functional motor recovery. Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a non-invasive and therapeutic treatment used to accelerate and enhance the recovery process of motor function in stroke patients. Many studies have reported that inhibiting contralesional rTMS may have positive effects in stroke patients with severe upper extremity motor impairment. In this context, the aim of the proposed study is to investigate whether there is a correlation between the change in qEEG parameters and the improvement of motor functions associated with rTMS treatment and to provide an electrophysiological prognostic biomarker of inhibiting contralesional rTMS for stroke patients.
The goal of this randomized controlled trial is to compare manual general anesthesia induction to general anesthesia induction guided by target controlled infusion system in cerebral ischemic stroke The main questions it aims to answer are: - Does target controlled infusion has a more favorauble hemodynamic profile than manual general anesthesia induction? - Do patients receiving general anesthesia with target controlled infusion system have a more favourable outcome? Participants will receive general anesthesia induction with a target controlled infusion system and will be compared to patients receiving manual general anesthesia induction.
Stroke is the leading cause of severe acquired disabilities in adults. It can affect sensory and motor functions which are closely entangled. Among them, upper limb function is often strongly impaired. In this study the investigators are interested in the eventuality to improve motor recovery by the mean of stimulating the proprioception. Proprioception can be stimulated by tendinous vibrations in order to act on the neuromuscular system through the vibratory tonic reflex and by movement illusion. Stimulation by tendinous vibrations, applied to the musculotendinous endings, has been already proposed in post stroke rehabilitation, but only at late stages. Thus the aim of our study is to observe the effects of repeated tendon vibrations, applied in the early post stroke phase, the effect being measured on the excitability of the motor cortex by the Motor Evoked Potentials and on the motor recovery (motor control and activities).
This is a study using magnetoencephalography (MEG) to look at recovery in those with minor stroke. The investigators know that these individuals report difficulties in attention, concentration, multi-tasking, energy level, and processing speed that appear to be independent of lesion size or location. The underlying pathophysiology is unclear; however, anecdotally, many individuals are significantly improved by 6 months post-stroke. One hypothesis is that a single lesion, regardless of size, may disrupt the classic neural networks required for cognitive function. The investigators are currently collecting data to better characterize these difficulties and stroke patients' recovery as part of a previously approved recovery study. In this sub-study, the investigators propose to add MEG at 1 and 6 months in a subset of individuals with small: 1) subcortical, and 2) cortical lesions. The investigators will partner with colleagues at the University of Maryland (College Park), who are well experienced with MEG to conduct this research. In addition a control population of age-similar individuals will be recruited for comparison. Cerebral activation patterns of individuals with stroke versus controls will be compared, both across patients with stroke at a given time point, and within subjects from 1 to 6 months to determine the association of abnormal activation with cognitive dysfunction and recovery. **The investigators have recently extended follow-up by adding an additional assessment at 12 months and will enroll additional participants (up to 40 patients with minor stroke, 15 age-similar controls).