Clinical Trials Logo

Spinal Cord Injury clinical trials

View clinical trials related to Spinal Cord Injury.

Filter by:

NCT ID: NCT05921487 Enrolling by invitation - Obesity Clinical Trials

Time Restricted Eating to Mitigate Obesity in Veterans With Spinal Cord Injury

Start date: September 1, 2023
Phase: N/A
Study type: Interventional

Spinal cord injury (SCI) causes paralysis and muscle atrophy and leads to weight gain and obesity. Obesity directly contributes to functional impairment and cardiometabolic dysfunction. There is a critical need to reduce the growing prevalence of obesity and cardiometabolic disease after SCI. My overall objective in this project is to gather crucial feasibility data on time restricted eating (TRE), a novel form of intermittent fasting. TRE is a straightforward method to induce weight loss without the need for calorie counting. TRE allows individuals to eat all their daily calories in a time restricted window and fast outside that window. A growing body of literature supports the safety and efficacy of TRE. Given the feasibility, high adherence, and substantial benefits of TRE in able-bodied individuals, it is important to test TRE to determine its feasibility in Veterans with SCI. The investigators will first test this intervention in Veterans with thoracic paraplegia, who are at greatest risk of muscle-joint upper body injury given the need to support body weight during activity. The investigators will determine adherence to a TRE window for 6-weeks duration in a convenience sample of Veterans with thoracic paraplegia and obesity. Based on the expected outcomes of good adherence, this study will lay the groundwork for future work by informing the design of a randomized controlled trial to test the efficacy of TRE to facilitate weight loss and improve function.

NCT ID: NCT05921175 Not yet recruiting - Spinal Cord Injury Clinical Trials

tSCS + EksoGT in SCI Patients

Start date: October 2023
Phase: N/A
Study type: Interventional

This study is aimed to evaluate whether transcutaneous spinal cord stimulation (tSCS) can augment robotic gait training (RGT) to improve functional mobility in participants with chronic paraplegia. It also evaluate the impact of the tSCS+RGT on health-related quality of life (HRQOL), compared to RGT alone. This is a prospective single-arm crossover study in participants with incomplete chronic traumatic spinal cord paraplegia. 6 subjects will be recruited. The intervention includes Phase 1 of training which consists of 16 sessions of robotic gait training (RGT) + conventional physiotherapy in 8-10 weeks, and Phase 2 of training which consists of 16 sessions of RGT training + tSCS + conventional physiotherapy in 8-10 weeks. Outcome measures including mobility function assessment and neuromuscular assessment will be collected at Baseline, Post-Phase 1 and Post-Phase 2. A satisfaction survey on the intervention "RGT training + tSCS + conventional physiotherapy" will be performed at week-18 assessment.

NCT ID: NCT05887752 Recruiting - Spinal Cord Injury Clinical Trials

Hunova® Randomized Controlled Trial for Trunk Control Improvement in Spinal Cord Injured Patients

Start date: June 5, 2023
Phase: N/A
Study type: Interventional

In patients with Spinal Cord Injury (SCI), trunk and therefore postural control (both in statics and dynamics) are impaired, often with strong consequences on daily life activities. Therefore, improvement and reinforcement of trunk control are primary rehabilitation (rehab) goals. For the evaluation of trunk control in SCI people, still today no tests and scales are definable as gold standards. Nowadays, for evaluation and rehab purposes of trunk control, balance and proprioception, in both sitting and standing positions, conventional rehabilitation can be supplemented with robotic treatments, e.g. through the Hunova® device (by Movendo Technology). Several studies have demonstrated that conventional rehab associated with robotic training is able to influence functional and motor outcomes in stroke patients, while little evidence is available on SCI patients, also on the number of robotic sessions needed. The present randomized controlled study primarily aims to demonstrate the effects on trunk control of an integrated rehab treatment (standard plus Hunova®), compared to the standard alone and to gain evidence on the better rehabilitation scheme in terms of number of Hunova® sessions. The correlation between the variation of trunk control, measured by the output data of the Hunova® device itself - ideally more objective - and that assessed through a validated clinical scale, will also be estimated.

NCT ID: NCT05805683 Recruiting - Spinal Cord Injury Clinical Trials

Calcitonin Therapy on Incidence and Severity of Neuropathic Pain After Spinal Cord Injury

Start date: May 1, 2023
Phase: N/A
Study type: Interventional

This prospective randomized double blinded study will be conducted to evaluate the effect of early pharmacologic intervention with calcitonin on the incidence or the severity of neuropathic pain after spinal cord injury

NCT ID: NCT05757830 Completed - Stroke Clinical Trials

PURO - PUlmonary Rehabilitation With O-RAGT Platform

PURO
Start date: December 23, 2022
Phase: N/A
Study type: Interventional

The goal of this interventional study is to assess differences in the metabolic consumption, the cardiorespiratory effort, the cardiac autonomic adaptation, and fatigability during ADL, such as standing from a chair and walking while wearing an electrically powered exoskeleton in different modes of supports in subjects with neurological diseases with moderate to severe walking impairments.

NCT ID: NCT05664646 Recruiting - Spinal Cord Injury Clinical Trials

Autonomic Effects of Stimulation in SCI

Start date: July 24, 2023
Phase: N/A
Study type: Interventional

This study aims to determine the effects of transcutaneous spinal cord stimulation to increase blood pressure and use that device to increase exercise endurance time and heart rate recovery during arm cycle ergometry. In addition, the investigators will see if the stimulation helps regulate body temperature when in a cool environment.

NCT ID: NCT05638191 Recruiting - Spinal Cord Injury Clinical Trials

Nerve Transfer Surgery to Restore Upper-limb Function After Cervical Spinal Cord Injury

Start date: June 3, 2021
Phase:
Study type: Observational [Patient Registry]

The goal of this prospective, open label cohort study is to assess functional and motor outcomes in individuals with cervical spinal cord injury who have undergone nerve transfer surgery, with the goal of increasing upper limb function. We will also compare these outcomes to a cohort of similarly matched individuals who have not undergone nerve transfer surgery, using robust outcome measures, rigorous pre-operative clinical and neurophysiological assessments, and standardized rehabilitation. At the end of this project we aim to develop a model for predicting nerve transfer outcomes using pre-operative clinical and neurophysiological characteristics.

NCT ID: NCT05470478 Not yet recruiting - Clinical trials for Amyotrophic Lateral Sclerosis

iBCI Optimization for Veterans With Paralysis

Start date: September 1, 2024
Phase: N/A
Study type: Interventional

VA research has been advancing a high-performance brain-computer interface (BCI) to improve independence for Veterans and others living with tetraplegia or the inability to speak resulting from amyotrophic lateral sclerosis, spinal cord injury or stoke. In this project, the investigators enhance deep learning neural network decoders and multi-state gesture decoding for increased accuracy and reliability and deploy them on a battery-powered mobile BCI device for independent use of computers and touch-enabled mobile devices at home. The accuracy and usability of the mobile iBCI will be evaluated with participants already enrolled separately in the investigational clinical trial of the BrainGate neural interface.

NCT ID: NCT05447676 Recruiting - Spinal Cord Injury Clinical Trials

Effects of 4-AP on Functional SCI Recovery

Start date: June 30, 2022
Phase: Early Phase 1
Study type: Interventional

The purpose of this study is to test a strategy to potentiate functional recovery of lower limb motor function in individuals with spinal cord injury (SCI). The FDA approved drug, Dalfampridine (4-AP). 4-AP will be used in combination of Spike-timing-dependent plasticity (STDP) stimulation and STDP stimulation with limb training.

NCT ID: NCT05433064 Recruiting - Spinal Cord Injury Clinical Trials

Spinal Cord Stimulation for Spinal Cord Injury Patients - Regain Walk and Alleviate Pain

Start date: May 1, 2020
Phase: N/A
Study type: Interventional

The study aims to examine the plausible interventional mechanisms underlying the effects of epidural spinal cord stimulation.