Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT04824768
Other study ID # CRet 1
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date May 20, 2021
Est. completion date May 26, 2022

Study information

Verified date March 2023
Source Universitat Internacional de Catalunya
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Spasticity is due to an abnormal processing of a normal input from muscle spindles in the spinal cord.


Description:

Stroke often affects sensory-motor networks and descending tracts, as reflected by several signs of upper motor neuron syndrome. One symptom is post-stroke spasticity. It is due to an abnormal processing of a normal input from muscle spindles in the spinal cord. It is often defined by a velocity-dependent increase in muscle tone and a resistance to passive muscle stretch. It has neural (increased reflex activity) and non-neural (altered visco-elastic properties due to immobilization) components. The prevalence of spasticity ranges from 25%-43% at 6 months post-stroke. Chronic spasticity can decrease the number of sarcomeres. As a result, the proportion of connective tissue in the muscle and fasciae can increase. These subjects present fibrosis that have augmented passive muscle stiffness due to structural and functional adaptations inside the muscle cells. Soft tissue changes may cause the pulling forces to be transmitted more readily to the muscle spindles, which can intensify sensory input thus increasing spasticity. It has a potential impact on lower limb function, which affects passive muscle stretch, range of motion, and motor unit recruitment during voluntary contraction. In the stance phase of gait, the deformity also produces an inadequate base of support, which is associated with balance impairments. This increases the risk of falls, reduces patient participation in daily activities, and decreases health-related quality of life. Physiotherapy treatments of spasticity aim to decrease excessive muscular tone, ease mobility, give the patient the sense of right position and avoid joint limitations. Functional massage is a non-invasive manual therapy technique that combines rhythmical passive joint mobilization with compression and decompression of the muscular belly with the tendinomuscular insertions to treat. It is indicated in cases of muscle stiffness associated with pain. Tecar therapy or Capacitive Resistive Electric Transfer Therapy (CRet) is a non-invasive diathermy technique which provides high frequency energy (300 KHz-1.2 MHz) generating a thermal effect on soft tissues. CRet is used to facilitate tissue regeneration, and it does not need a surface-cooling system, as its wave frequency is lower than in conservative diathermy. CRet effectiveness has been evaluated in several studies. It is effective in the treatment of chronic musculoskeletal disorders, where a temperature increase on deep tissues is needed in order to generate changes on its viscoelasticity. This effect may be beneficial in the spasticity treatment since spasticity onset and development may be affected by structural changes in muscular and tendinous fibers. No studies on the effects of CRet in post-stroke spasticity treatment were found.


Recruitment information / eligibility

Status Completed
Enrollment 36
Est. completion date May 26, 2022
Est. primary completion date April 29, 2022
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Diagnosis of Stroke - Scoring 1 on the Modified Ashworth Scale (MAS) for hip or/and knee flexion or/and ankle dorsiflexion on the most affected limb - Scoring 25 or plus on the Montreal Cognitive Assessment (MoCA) Exclusion Criteria: - Having suffered a traumatism on the lower limbs three months, or less, before the intervention - Suffer other neurological disease - Presence of osteosynthetic material - Pacemaker wearing - Treatment with botulinum toxin or another antispastic medication, six months , or less, before the intervention - Carry baclofen pump - Functional inability to adopt the prone or supine position on the treatment table - Functional inability to sit, stand and walk - Poor language and communication skills that make difficult to understand the informed consent - Contraindications to Functional Massage (infectious diseases, inflammatory vascular conditions, acute inflammation, hemorrhagic, fever)

Study Design


Intervention

Device:
Tecar Therapy
CRet is a non-invasive diathermy technique that provides high frequency energy generating a thermal effect on soft tissues. Functional massage (FM) is a non-invasive manual therapy technique that combines rhythmical passive joint mobilization with compression of the muscular belly with the muscle-tendon insertions to be treated. In prone position, subjects will get a 7 min preparation massage with CRet on resistive mode (80-100W), on the lumbar area, followed by a 5 min preparation massage with CRet on resistive mode (100-120 W) on the hamstrings. Then a 5 min F.M with passive ankle dorsiflexion and CRet on resistive mode (110-120 W) will be performed on the gastrocnemius medialis and lateralis, followed by a 4 min FM with CRet on capacitive mode (180-250VA) on the mentioned area. In supine position, a 5 min FM with passive knee flexion and CRet on resistive mode 8. A physiotherapist will monitor the temperature of the patient's treated area every 2 minutes
Sham Tecar Therapy
In prone position, subjects will get a 7 min preparation massage with CRet on resistive mode (0 W), on the lumbar area, followed by a 5 min preparation massage with CRet on resistive mode (0 W) on the hamstrings. Then a 5 min FM with passive ankle dorsiflexion and CRet on resistive mode (0 W) will be performed on the gastrocnemius medialis and lateralis, followed by a 4 min FM with CRet on capacitive mode (0 VA) on the mentioned area. In supine position, a 5 min FM with passive knee flexion and CRet on resistive mode 0. A physiotherapist will monitor the temperature of the patient's treated area every 2 minutes

Locations

Country Name City State
Spain Laura Garcia Rueda Barcelona
Spain Universitat Internacional de Catalunya Barcelona Catalonia

Sponsors (1)

Lead Sponsor Collaborator
Universitat Internacional de Catalunya

Country where clinical trial is conducted

Spain, 

References & Publications (13)

Beltrame R, Ronconi G, Ferrara PE, Salgovic L, Vercelli S, Solaro C, Ferriero G. Capacitive and resistive electric transfer therapy in rehabilitation: a systematic review. Int J Rehabil Res. 2020 Dec;43(4):291-298. doi: 10.1097/MRR.0000000000000435. — View Citation

Cacho RdO, Cacho EWA, Loureiro AB, et al. The spasticity in the motor and functional disability in adults with post-stroke hemiparetic. Fisioterapia em Movimento. 2017;30(4):745-752.

Clijsen R, Leoni D, Schneebeli A, Cescon C, Soldini E, Li L, Barbero M. Does the Application of Tecar Therapy Affect Temperature and Perfusion of Skin and Muscle Microcirculation? A Pilot Feasibility Study on Healthy Subjects. J Altern Complement Med. 2020 Feb;26(2):147-153. doi: 10.1089/acm.2019.0165. Epub 2019 Oct 3. — View Citation

Francisco GE, McGuire JR. Poststroke spasticity management. Stroke. 2012 Nov;43(11):3132-6. doi: 10.1161/STROKEAHA.111.639831. Epub 2012 Sep 13. No abstract available. — View Citation

Gillard PJ, Sucharew H, Kleindorfer D, Belagaje S, Varon S, Alwell K, Moomaw CJ, Woo D, Khatri P, Flaherty ML, Adeoye O, Ferioli S, Kissela B. The negative impact of spasticity on the health-related quality of life of stroke survivors: a longitudinal cohort study. Health Qual Life Outcomes. 2015 Sep 29;13:159. doi: 10.1186/s12955-015-0340-3. — View Citation

Kuo C, Hu G. Post-stroke spasticity: A review of epidemiology, pathophysiology, and treatments. International Journal of Gerontology. 2018;12(4):280-284.

Lance JW. The control of muscle tone, reflexes, and movement: Robert Wartenberg Lecture. Neurology. 1980 Dec;30(12):1303-13. doi: 10.1212/wnl.30.12.1303. No abstract available. — View Citation

Lieber RL, Runesson E, Einarsson F, Friden J. Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material. Muscle Nerve. 2003 Oct;28(4):464-71. doi: 10.1002/mus.10446. — View Citation

Lopez-de-Celis C, Hidalgo-Garcia C, Perez-Bellmunt A, Fanlo-Mazas P, Gonzalez-Rueda V, Tricas-Moreno JM, Ortiz S, Rodriguez-Sanz J. Thermal and non-thermal effects off capacitive-resistive electric transfer application on the Achilles tendon and musculotendinous junction of the gastrocnemius muscle: a cadaveric study. BMC Musculoskelet Disord. 2020 Jan 20;21(1):46. doi: 10.1186/s12891-020-3072-4. — View Citation

Rehme AK, Grefkes C. Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol. 2013 Jan 1;591(1):17-31. doi: 10.1113/jphysiol.2012.243469. Epub 2012 Oct 22. — View Citation

Stecco C, Porzionato A, Lancerotto L, Stecco A, Macchi V, Day JA, De Caro R. Histological study of the deep fasciae of the limbs. J Bodyw Mov Ther. 2008 Jul;12(3):225-30. doi: 10.1016/j.jbmt.2008.04.041. Epub 2008 Jun 13. — View Citation

Trompetto C, Marinelli L, Mori L, Pelosin E, Curra A, Molfetta L, Abbruzzese G. Pathophysiology of spasticity: implications for neurorehabilitation. Biomed Res Int. 2014;2014:354906. doi: 10.1155/2014/354906. Epub 2014 Oct 30. — View Citation

Zorowitz RD, Gillard PJ, Brainin M. Poststroke spasticity: sequelae and burden on stroke survivors and caregivers. Neurology. 2013 Jan 15;80(3 Suppl 2):S45-52. doi: 10.1212/WNL.0b013e3182764c86. — View Citation

* Note: There are 13 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Muscle tone To evaluate the immediate changes in terms of muscle tone on the rectus femoris, medialis and gastrocnemius after one session with CRet as coadjuvant of functional massage by modified Ashworth Scale of Hip flexion-extension, knee flexion-extension, ankle plantar flexion and dorsiflexion. The minimum and maximum values are 0 and 4, higher scores mean a worse outcome. T1: Baseline, T2: Immediately after treatment and T3: follow up 30 minutes after treatment
Secondary Muscle stiffness To evaluate muscle stiffness on rectus femoris and gastrocnemius after one session with CRet as coadjuvant of functional massage by mioton Myoton Pro, Myoton Ltds., Estonia) on the muscular belly. T1: Baseline, T2: Immediately after treatment and T3: follow up 30 minutes after treatment
Secondary Muscle flexibility Myoton-Pro device applied on the muscle belly of rectus femoris, internal and external gastrocnemius T1: Baseline, T2: Immediately after treatment and T3: follow up 30 minutes after treatment
Secondary Muscle relaxation Myoton-Pro device applied on the muscle belly of rectus femoris, internal and external gastrocnemius T1: Baseline, T2: Immediately after treatment and T3: follow up 30 minutes after treatment
Secondary Passive range of motion Goniometry applied on passive hip flexion and extension, passive knee flexion and ankle plantar flexion and dorsiflexion with a wedge under the knees. The force applied by the physiotherapist will be recorded with a goniometer and will be applied to the head of the metatarsals. T1: Baseline, T2: Immediately after treatment and T3: follow up 30 minutes after treatment
See also
  Status Clinical Trial Phase
Active, not recruiting NCT05559255 - Changes in Pain, Spasticity, and Quality of Life After Use of Counterstrain Treatment in Individuals With SCI N/A
Completed NCT03908580 - MEDITOXIN® Treatment in Subjects With Post-Stroke Upper Limb Spasticity Phase 4
Not yet recruiting NCT04550793 - Using Shear Wave Ultrasound Elastography for Follow up After Anti-spastic Intervention Among Stroke Patients
Recruiting NCT05432999 - Extracorporeal Shockwave Therapy for Spasticity in People With Spinal Cord Injury N/A
Recruiting NCT05687097 - Untreated Sleep Apnea as an Aggravating Factor for Other Secondary Medical Conditions After Spinal Cord Injury
Active, not recruiting NCT05562453 - Performance and Long-term Safety of FlowOx2.0™ in Patients With Multiple Sclerosis - Impact on Spasticity and Pain N/A
Recruiting NCT06214975 - EXOPULSE Mollii Suit, Motor Function & Stroke (EXOSTROKE 2) N/A
Recruiting NCT05464160 - Focal Muscular Vibration in Patients With Severe Acquired Brain Injury N/A
Completed NCT04130295 - Influence of Wearable Intensive Nerve Stimulation on Spasticity and Function in Persons With Spinal Cord Injury N/A
Recruiting NCT06070233 - Radiosurgery Treatment for Spasticity Associated With Stroke, SCI & Cerebral Palsy N/A
Completed NCT03747900 - Dry Needling and Botulinum Toxin in the Management of Poststroke Spasticity N/A
Completed NCT03307135 - Medical Spastic Patient Machine Interface MSPMI : Biomechanical and Electrophysiological Assessment of the Triceps Surae Spasticity N/A
Recruiting NCT05070780 - Neurophysiological Evaluation of Muscle Tone
Recruiting NCT04620707 - RGS@Home: Personalized 24/7 Home Care Post-stroke N/A
Recruiting NCT06109129 - Investıgatıon Of The Effectıveness Of The Mollıı Suıt In Chıldren Wıth Ambulatory Cerebral Palsy N/A
Enrolling by invitation NCT05598736 - Performance and Long-term Safety of FlowOx2.0™, Multiple Sclerosis, Spasticity and Pain N/A
Completed NCT05103202 - Efficacy and Safety of 10-Week or Shorter vs 12-Week or Longer Injection Intervals of Botulinum Toxin
Active, not recruiting NCT05626790 - Effects of PNF and Static Stretching on Architecture and Viscoelastic Properties of Hemiplegic Elbow N/A
Recruiting NCT04904016 - Pilot Investigation to Evaluate FlowOx2.0™ for Experimental Treatment of Spasticity N/A
Withdrawn NCT05887479 - The Effect of Ultrasound-Guided Botulinum Toxin Injections on Pain, Functionality, Spasticity, and Range of Motion in Patients With Post-Stroke Upper Extremity Spasticity Phase 4