View clinical trials related to Spasticity, Muscle.
Filter by:Cerebral palsy (CP) is a motor impairment due to a brain malformation or a brain lesion before the age of two. Spasticity, hypertonus in flexor muscles, dyscoordination and an impaired sensorimotor control are cardinal symptoms. The brain lesion is non-progressive, but the flexor muscles of the limbs will during adolescence become relatively shorter and shorter (contracted), forcing the joints into a progressively flexed position. This will worsen the positions of already paretic and malfunctioning arms and legs. Due to bending forces across the joints, bony malformations will occur, worsening the function even further. Currently, the initial treatment of choice is the use of braces, which diminishes the shortening somewhat, but eventually lengthenings of tendons and release of aponeuroses around the muscles often is needed, and transfers of wrist flexors to wrist extensors may improve wrist position. But the long-term results are unpredictable- how much does the muscle need to be lengthened? What muscles should be transferred for a better position of the wrist, and at what tension? A method to measure sarcomere length in vivo has been developed. The sarcomere, the distance between two striations, is the smallest contractile unit in the striated muscle. When, during surgery, a muscle fiber bundle is transilluminated with a low energy laser light, a diffraction pattern is formed. This diffraction pattern reflects the sarcomere length, and thereby an instant measure of how the stretch of the muscle is obtained. When performing tendon transfers of e.g. wrist flexors to wrist extensors, the setting of the tension of the transfer is arbitrary, and the long-term result is unpredictable. Laser diffraction measurements will give a guide to a precise setting of tension. It is known that there may be pathological changes in muscle in cerebral palsy that also will affect the long-term results of tendon lengthenings and transfers. In order to also take these changes into account, small muscle biopsies will be taken during the same surgeries. These will be examined with immuno-histochemical and biochemical techniques, gel-electrophoresis as well as electron microscopy.
MELPIDA is proposed for the treatment of subjects with SPG50 and targets neuronal cells to deliver a fully functional human AP4M1 cDNA copy via intrathecal injection to counter the associated neuronal loss. Outcomes will evaluate the safety and tolerability of a single dose of MELPIDA, which will be measured by the treatment-associated adverse events (AEs) and serious adverse events (SAEs). Secondarily, the trial will explore efficacy in terms of disease burden assessments.
Severe acquired brain injury (sABI) is a group of disorders that cause long-term disability. Rehabilitation is essential to counteract bed immobilization, muscle failure, pain, and sensory deficits that can affect the clinical and rehabilitation pathway of these patients. Focal muscle vibration (FMV) is a tool that uses low-amplitude, high-frequency vibrations that when applied to muscle-tendon units. This technique, administered at specific frequencies, amplitudes and durations, can generate action potentials of the same frequency as the stimulus applied to the muscle or tendon. This makes it possible to activate selected afferent fibers and stimulate targeted brain areas with persistent effects over time (long-term potentiation). Regarding the effect of counteracting vibration spasticity, FMV is able to inhibit the reflex arc and induce reciprocal inhibition of functional agonist muscle. In addition, the strong proprioceptive stimulus generated by vibration is able to reach the primary motor and somatosensory cortex, enhancing cortical mechanisms that regulate co-contraction between agonist and antagonist muscles, thereby reducing muscle tone and joint stiffness. In many studies, this technique has been shown to be effective in reducing pain and joint stiffness by improving muscle contraction and motor control.
Spasticity develops months after spinal cord injury (SCI) and persists over time. It presents as a mixture of tonic features, namely increased muscle tone (hypertonia) and phasic features, such as hyperactive reflexes (hyperreflexia), clonus, and involuntary muscle contractions (spasms). Spasticity is often disabling because it interferes with hygiene, transfers, and locomotion and can disturb sleep and cause pain. For these reasons, most individuals seek treatments for spasticity after SCI. New developments in electrical neuromodulation with transcutaneous spinal stimulation (TSS) show promising results in managing spasticity non-pharmacologically. The underlying principle of TSS interventions is that the afferent input generated by posterior root stimulation modifies the excitability of the lumbosacral network to suppress pathophysiologic spinal motor output contributing to distinctive features of spasticity. However, the previous TSS studies used almost identical protocols in terms of stimulation frequency and intensity despite the great flexibility offered by this treatment strategy and the favorable results with the epidural stimulation at higher frequencies. Therefore, the proposed study takes a new direction to systematically investigate the standalone and comparative efficacy of four TSS interventions, including those used in previous studies. Our central hypothesis is that electrical neuromodulation with the selected TSS protocols (frequency: 50/100 Hz; intensity: 0.45 or 0.9 times the sub-motor threshold) can reduce and distinctly modify tonic and phasic components of spasticity on short- and long-term basis. We will test our hypothesis using a prospective, experimental, cross-over, assessor-masked study design in 12 individuals with chronic SCI (more than 1-year post-injury). Aim 1. Determine the time course of changes and immediate after-effects of each TSS protocol on tonic and phasic spasticity. The results will reveal the evolution of changes in spasticity during 30-min of TSS and the most effective protocol for producing immediate aftereffects. Aim 2. Determine the effect of TSS on spasticity after a trial of home-based therapy with each protocol. The participants will administer 30 min of TSS daily for six days with each of the four TSS protocols selected randomly. This aim will reveal the long-term carry-over effects of TSS intervention on various components of spasticity after SCI. Aim 3. Determine the participants' experience with TSS as a home-based therapy through focus group meetings. We will conduct focus group meetings after participants finish the home-based therapy trial. Accomplishing this specific aim will provide a valuable perspective on the value, challenges, and acceptability of TSS as a home-based intervention. The study addresses important questions for advancing scientific knowledge and clinical management of spasticity after SCI. Specifically, it will examine the efficacy of TSS frequencies and intensities on tonic and phasic spasticity. The study results will be relevant for a high proportion of individuals living with SCI that could benefit from this novel and low-cost non-pharmacological approach to managing spasticity after SCI.
People with spinal cord injury (SCI) experience a host of secondary complications that can impact their quality of life and functional independence. One of the more prevalent complications is spasticity, which occurs in response to spinal cord damage and the resulting disruption of motor pathways. Common symptoms include spasms and stiffness, and can occur more than once per hour in many people with SCI. Spasticity can have a negative impact over many quality of life domains, including loss of functional independence, activity limitations, and even employment. Its impact on health domains is also pronounced, with many people who have spasticity reporting mood disorders, depression, pain, sleep disturbances, and contractures. Spasticity can interfere with post-injury rehabilitation and lead to hospitalization. There are many treatments for spasticity in this population. However, many do not have long-term efficacy, and, if they do, they are often pharmacological in nature and carry side effects that could limit function or affect health. The goal of this pilot, randomized-controlled study is to investigate the potential efficacy and safety of a non-invasive treatment with a low side effect profile, extracorporeal shockwave therapy (ESWT). ESWT has shown some benefits in people with post-stroke spasticity with no long term side effects. Thirty individuals with chronic, traumatic SCI will be recruited. Fifteen will be provided with ESWT while the other fifteen will be given a sham treatment. Clinical and self-report measures of spasticity and its impact on quality of life will be collected, as well as quantitative ultrasound measures of muscle architecture and stiffness. The ultimate goal of this pilot project is to collect the data necessary to apply for a larger randomized-controlled trial. Conducting a larger trial will allow for a more powerful estimation of safety and efficacy of ESWT as a treatment for spasticity in people with SCI.
For many people with spinal cord injury (SCI), the goal of walking is a high priority. There are many approaches available to restore walking function after SCI; however, these approaches often involve extensive rehabilitation training and access to facilities, qualified staff, and advanced technology that make practicing walking at home difficult. For this reason, developing training approaches that could be easily performed in the home would be of great value. In addition, non-invasive spinal stimulation has the potential to increase the effectiveness of communication between the brain and spinal cord. Combining motor skill training (MST) with transcutaneous spinal stimulation (TSS) may further enhance the restoration of function in persons with SCI. Therefore, the purpose of this study is to determine if moderate-intensity, MST can improve walking-related outcomes among persons with SCI and to determine if the addition of non-invasive TSS will result in greater improvements in function compared to training alone.
this study will be conducted to f find the effects of multiphasic neuroplasticity based training protocol with Shock Wave Therapy on Neurophysiological, Morphological and Functional Parameters of Post Stroke Spasticity.
The purpose of the HSP Sequencing Initiative is to better understand the role of genetics in hereditary spastic paraplegia (HSP) and related disorders. The HSPs are a group of more than 80 inherited neurological diseases that share the common feature of progressive spasticity. Collectively, the HSPs present the most common cause of inherited spasticity and associated disability, with a combined prevalence of 2-5 cases per 100,000 individuals worldwide. In childhood-onset forms, initial symptoms are often non-specific and many children may not receive a diagnosis until progressive features are recognized, often leading to a significant diagnostic delay. Genetic testing in children with spastic paraplegia is not yet standard practice. In this study, the investigators hope to identify genetic factors related to HSP. By identifying different genetic factors, the investigators hope that over time we can develop better treatments for sub-categories of HSP based on cause.
Stroke is of high morbidity and mortality, and surviving patients are often unable to take care of themselves because of severe motor dysfunction. The brain has plasticity, and makes adaptive changes after stroke, resulting in the reorganization and compensation of neural networks. However, the muscle tone of some patients will significantly increase during the recovery process, which affects the rehabilitation effect. Neuromodulation techniques such as repetitive transcranial magnetic stimulation (rTMS) have been widely used to promote brain network remodeling after stroke. The investigators attempted to evaluate the motor brain network characteristics of spastic patients by fNIRS, and used the most active brain regions as rTMS stimulation regions to evaluate the improvement effect of this individualized treatment on post-stroke spasticity.
While there are many studies examining the effect of different exercises on spasticity and balance activities in individuals with stroke, no study has been found on the effect of speed-based re-learning training on spasticity and balance activities. In this study, it was aimed to investigate whether the WBV treatment protocol determined has an effect on functional capacity and respiratory functions in individuals with stroke. In this sense, our study was planned to investigate the effect of speed-based motor learning training on spasticity characteristics and balance activities in stroke patients.