View clinical trials related to Spasticity, Muscle.
Filter by:The goal of this observational study is to understand the impact of spasticity on muscle changes and functional performance in stroke patients with lower limb spasticity in comparison to non-stroke individuals. The main questions it aims to answer are: - How does spasticity affect muscle changes and lower limb functional performance in stroke patients? - How do structural and textural parameters in ultrasound images differ between spastic stroke patients and non-stroke individuals? Participants will undergo ultrasound evaluation of their leg muscles to measure structural and textural parameters. They will also take part in functional assessments to assess their performance in activities related to lower limb mobility. Researchers will compare the structural and textural ultrasound parameters between stroke patients and non-stroke individuals to determine any notable differences. The study aims to identify the relationship between muscle changes, spasticity, and functional performance in stroke patients.
Extracorporeal shock wave therapy (ESWT) has emerged as an effective therapeutic intervention for addressing post-stroke limb spasticity. This research aims to explore the therapeutic implications of focused ESWT for wrist and finger flexor muscles in patients suffering from post-stroke upper limb spasticity.
The purpose of our study is to evaluate vibrotactile Coordinated Reset (vCR) and its effects on spasticity symptoms in incomplete spinal cord injured patients. vCR will be administered with a device called the Stanford CR Glove. vCR is expected to provide patients with a non-invasive alternative to the most widely used treatments such as oral baclofen and or deep brain stimulation. Patients will be followed for three months and will be asked to come to the lab for clinical testing 4 times during this period. A total of 30 patients will be included in the study.
Little is known about the peripheral and central mechanisms of action of selective dorsal rhizotomy surgery for the treatment of spasticity. A better understanding of these mechanisms will enable us to improve the surgical procedure. This will require cortico-medullo-radiculo-muscular recordings never before performed and published in the literature, and the identification of variations in connectivity correlated with the clinic.
Introduction: We aimed to compare the efficacy of Botulinum Toxin Type A(BoNT-A) injection and BoNT-A injection in combination with ESWT for post-stroke lower extremity ankle plantar flexor spasticity. Materials and Method: Patients with post-stroke ankle plantar flexor spasticity of 1 or more on the modified Ashworth Scale(MAS) were randomized into two groups. Group 1(n:20): BoNT-A was injected into the gastrocnemius muscle and conventional physical therapy exercises were performed. Group 2(n:20): ESWT was applied to the gastrocnemius muscle in addition to the treatments in group 1.
The goal of this clinical trial is to demonstrate the improvement of motor functions related symptoms in patients with stroke and spasticity using Exopulse Mollii suit stimulation. The main questions it aims to answer are: to evaluate the short-term impact of EXOPULSE Mollii suit on balance in adult patients with stroke and suffering from spasticity. to assess the effects of Exopulse Mollii suit on spasticity, mobility, pain, fatigue and QoL. . Participants will participate in: One baseline visit for inclusion during which the patient will undergo the first session (active or sham) along with evaluations (before and after the session) One visit after two weeks during which the patient will undergo the second session (active or sham) along with evaluations (before and after the session) One visit after two weeks of the second stimulation condition; the patients will undergo a third evaluation and receive the EXOPULSE Mollii Suit for the four-week open label phase and will use the suit at home for an active stimulation session every other day for four weeks. One visit at the end of the open label phase to perform the fourth and last evaluation and return the EXOPULSE Mollii suit. Researchers will compare both Active and Sham groups to demonstrate the improvement of motor functions related symptoms in patients with stroke and spasticity using Exopulse Mollii suit.
Cerebral Palsy (CP) is the most common developmental disorder in childhood. Individuals' independence in daily living activities and participation in education, games, social and community activities are restricted. Technology applications in the field of rehabilitation are gaining momentum. EXOPULSE Mollii Suit method, one of the newest rehabilitation technology products, is a non-invasive neuromodulation approach with a garment that covers the whole body and electrodes placed inside. Designed to improve motor function by reducing spasticity and pain, the method is based on the principle of reciprocal inhibition, which occurs by stimulating the antagonist of a spastic muscle at low frequencies and intensities. Therefore, the aim of our study is to examine the effectiveness of the Mollii Suit application on gross and fine motor function, spasticity severity, balance, walking, selective motor control, postural control, daily living activities, quality of life, pain and sleep quality in individuals with ambulatory spastic CP.
In chronic hemiparesis, abnormal antagonist muscle activation in the paretic lower limb contributes to impair ambulation capacities. A biased estimate of antagonist muscle activation when using surface bipolar EMG compared with high-density (HD) EMG has been previously reported in healthy subjects. The present study compares muscles cocontraction at the paretic ankle estimated with a pair of and multi-channel surface EMG.
A scientific study is being done to test a special treatment for people who have spasticity or tight muscles. This treatment is called "stereotactic radiosurgery dorsal rhizotomy." It uses very accurate beams of radiation to target certain nerves in the back to help loosen up the muscles. In this study, people are put into two groups by chance: one group gets the real treatment, and the other group gets a "fake" treatment that doesn't do anything. This fake treatment is called a "sham." Doing this helps make sure the study is fair and the results are true. After the people in the study get their treatment, the researchers will watch and see how they do. They will check if their muscles are less stiff and if they have any side effects. By looking at the results from both groups, the researchers can find out if the special treatment really helps people with spasticity. Patients who got the "fake" treatment will be eligible to receive the "real" treatment after 6 months.
Contracture which is defined as a limitation of the maximum passive range of motion due to changes in periarticular soft tissue can contributes to severe pain and increased disabilities. Once contracture is present, management options are very limited and mainly includes surgery. This clinic offers cryoneurolysis routinely to spastic patients to manage their severe spasticity, contracture and associated pain. In this observational project, the outcomes after cryoneurolysis in patients with wrist and hand contracture will be studied systematically and with more details to determine any changes in pain and range of motion after this procedure.