View clinical trials related to Spastic Paraplegia, Hereditary.
Filter by:Hereditary spastic paraplegia type 4 is the most frequent mutation of hereditary spastic paraplegias. It is commonly described as pure, with progressive weakness of the lower limbs, pyramidal syndrome and vesico-sphincter disorders. However, cognitive disorders have been reported for over 20 years, but remain poorly characterized.
To assess the safety and tolerability of single and multiple doses of MTR-601 in normal healthy volunteers under fed and fasted conditions. To evaluate the plasma and urine pharmacokinetics (PK) of MTR-601. To evaluate the pharmacodynamic (PD) effects of MTR-601 on muscle strength and muscle accumulation of MTR-601 by muscle biopsy and other potential mechanistic, predictive and PD markers of MTR-601.
This study uses medical records that allow retrospective data extraction of clinical manifestation to assess the natural history of HPDL mutations
The purpose of the HSP Sequencing Initiative is to better understand the role of genetics in hereditary spastic paraplegia (HSP) and related disorders. The HSPs are a group of more than 80 inherited neurological diseases that share the common feature of progressive spasticity. Collectively, the HSPs present the most common cause of inherited spasticity and associated disability, with a combined prevalence of 2-5 cases per 100,000 individuals worldwide. In childhood-onset forms, initial symptoms are often non-specific and many children may not receive a diagnosis until progressive features are recognized, often leading to a significant diagnostic delay. Genetic testing in children with spastic paraplegia is not yet standard practice. In this study, the investigators hope to identify genetic factors related to HSP. By identifying different genetic factors, the investigators hope that over time we can develop better treatments for sub-categories of HSP based on cause.
It's a single-center, prospective, open label clinical study with a 12 months follow-up period, to investigate the therapeutic effect and safety of spinal cord stimulation (SCS) on motor function and gait in patients with pure Hereditary Spastic Paraplegias.
The purpose of this study is to learn more about amyotrophic lateral sclerosis (ALS) and other related neurodegenerative diseases, including frontotemporal dementia (FTD), primary lateral sclerosis (PLS), hereditary spastic paraplegia (HSP), progressive muscular atrophy (PMA) and multisystem proteinopathy (MSP). More precisely, the investigator wants to identify the links that exist between the disease phenotype (phenotype refers to observable signs and symptoms) and the disease genotype (genotype refers to your genetic information). The investigator also wants to identify biomarkers of ALS and related diseases.
The Registry and Natural History Study for Early Onset Hereditary Spastic Paraplegia (HSP) is focused on gathering longitudinal clinical data as well as biological samples (skin and/or blood and/or saliva) from male or female patients who exhibited onset of HSP symptoms at 18 years old or younger with (1) a clinical diagnosis of hereditary spastic paraplegia and/or (2) the presence of variants in HSP related genes and/or be a relative of a person with such a diagnosis. Currently, the treatment for this disorder is generally symptomatic and available therapies improve quality of life, but are grossly inefficient in slowing the disease progression. Access to the registry information will be limited to the study staff who are responsible for recruitment and maintenance of the registry. We hope that recruitment into registry for studies will advance knowledge of the causes, clinical course, diagnosis and treatment of these conditions.
Spastic paraplegia type 5 (SPG5) is a rare subtype of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative disorders defined by progressive neurodegeneration of the corticospinal tract motor neurons. SPG5 is caused by recessive mutations in the gene CYP7B1 encoding oxysterol-7a-hydroxylase. This enzyme is involved in the degradation of cholesterol into primary bile acids. CYP7B1 deficiency has been shown to lead to accumulation of neurotoxic oxysterols. Oxysterols were found to impair metabolic activity and viability of human cortical neurons at concentrations found in SPG5 patients, indicating that elevated levels of oxysterols might be key pathogenic factors in SPG5. Monoclonal antibodies that inhibit proprotein convertase subtilisin-kexin type 9 (PCSK9) have emerged as a new class of drugs that effectively lower cholesterol levels. Evolocumab, a member of this class, is a fully human monoclonal antibody that reduces LDL cholesterol levels by approximately 60%. We thus performed this interventional trial with Evolocumab 420 mg for SPG5 patients.
The aim of this study is to determine the clinical spectrum and natural progression of Hereditary Spastic Paraplegias (HSP) and related disorders in a prospective multicenter natural history study, identify digital, imaging and molecular biomarkers that can assist in diagnosis and therapy development and study the genetic etiology and molecular mechanisms of these diseases.
Study goals 1. Prospective longitudinal data on progression in the natural course of SPG4 in presymptomatic mutation carriers prior to clinical disease onset and in early stages of disease 2. Biomarkers providing objective measures of disease activity