View clinical trials related to Shock, Hemorrhagic.
Filter by:The aim of this work was to investigate the effects of low dose of norepinephrine in preperiod of hypotensive resuscitation in hemorrhagic shock.
Management of post-traumatic severe hemorrhage remains a challenge to any trauma care system. Studying integrated and innovative tools designed to predict the risk of early severe hemorrhage (ESH) and resource needs could offer a promising option to improve clinical decisions and then shorten the time of intervention in the context of pre-hospital severe trauma. As evidence seems to be lacking to address this issue, this ambispective validation study proposes to assess on an independent cohort the predictive performance of a newly developed machine learning-based model, as well as the feasibility of its clinical deployment under real-time healthcare conditions.
Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a procedure that has the goal to stabilize trauma patients with non-compressible torso hemorrhage by temporarily occluding the aorta with a ballon catheter to increase central perfusion and stop uncontrollable bleeding from the diaphragm downwards. The investigators are planning to evaluate all patients who had a REBOA catheter placed at their clinic or in the pre-clinical setting from the start of 2019 to the 31.12.2022 who were transferred to their clinic, with basic demographic and clinical data, the procedural specifics, and their potential complications.
The goal of this clinical trial is to compare the effectiveness of unseparated whole blood (referred to as Low-Titer Group O Whole Blood) and the separate components of whole blood (including red cells, plasma, platelets, and cryoprecipitate) in critically injured patients who require large-volume blood transfusions.
Annually over 7000 Australians are treated for severe trauma. Haemorrhage secondary to severe trauma is a major cause of potentially preventable death and poor outcomes in Australian adults. Severe trauma may trigger changes in blood clotting mechanisms and factor levels leading to inhibition of clot formation and reduced clot strength. This results in the inability of the severely injured trauma patient to form adequate clots to help stop bleeding. There is good evidence to suggest the loss of clotting factors during haemorrhage is associated with worse outcomes and it is thought the early replacement of these factors may reduce bleeding and improve patient outcomes. Fibrinogen is a key clotting factor that helps bind clots together and early fibrinogen replacement may improve outcomes. Currently fibrinogen is replaced using cryoprecipitate, a blood product made from blood donated by healthy donors which is a precious resource. It can take a significant amount of time to administer as it is frozen and stored in the blood bank. Timely administration of cryoprecipitate is difficult as it requires thawing prior to transfusion. The large doses of cryoprecipitate used in traumatic haemorrhage can put strain on local blood banks in supplying requested units in a timely manner. Additionally, the widely dispersed population of Australia introduces logistic challenges to the maintenance of adequate cryoprecipitate stocks to individual hospital blood banks, especially in remote regions. However, cryoprecipitate contains a number of other coagulation factors (not just fibrinogen) that may be instrumental in clot formation and resistance to fibrinolysis. Fibrinogen concentrate is an alternative product used to assist in blood clotting. It is a dry powder form of fibrinogen and can be reconstituted at the bedside and given quickly. The use of a fibrinogen factor concentrate with a long shelf life that is easy to use has significant implications for both large urban metropolitan areas and remote isolated communities. The timing and mode of fibrinogen replacement in traumatic haemorrhage has implications for patient outcomes, blood product availability, costs and the national blood supply. Despite the importance of fibrinogen replacement in traumatic haemorrhage, there have been no clinical trials powered for clinical outcomes directly comparing fibrinogen concentrate and cryoprecipitate. FEISTY II will evaluate the efficacy, safety and cost-effectiveness of Fibrinogen Concentrate vs Cryoprecipitate in trauma patients with major haemorrhage. FEISTY II is a phase III randomised trial which will enrol 850 patients from Australian and New Zealand major trauma centres, with a primary patient outcome of days alive out of hospital at day 90 after injury. Severely injured trauma patients who require blood transfusion and have evidence of low fibrinogen levels will be randomised to receive either fibrinogen concentrate or standard care with cryoprecipitate
Open label, multi-center, pre-hospital randomized trial utilizing 10 level-1 trauma centers designed to determine the efficacy and safety of low titer whole blood resuscitation as compared to standard of care resuscitation in patients at risk of hemorrhagic shock and to appropriately characterize the hemostatic competency of whole blood relative to its age.
The primary aim of this observational registry is to study the outcomes of patients with hemorrhagic shock transported by Boston MedFlight receiving blood products during transport.
In the emergency department (ED), the severity assessment of shock is a fundamental step prior to the admission in intensive care unit (ICU). As biomarkers are time consuming to evaluate severity of the micro and macro-circulation alteration, capillary refill time and skin mottling score are 2 simples, available clinical criteria validated to predict mortality in the ICU. The aim of this study is to provide clinical evidence that capillary refill time and skin mottling score assessed in the ED also predict ICU admission of patients with septic or haemorrhagic shock.
In shock patients, fluid resuscitation, infusion of vasopressors and transfusion are guided on hemodynamic macrovascular parameters. Analysis of sublingual microcirculation in shock patients is predictive of mortality and organ dysfunction. To optimize the quality of the resuscitation in shock patients, it could be useful to have an assessment of sublingual microcirculation in addition to the macrovascular parameters usually assessed by the nurses. But, this requires to have a monitor of sublingual microcirculation easy to use and to analyze at the bedside. The primary outcome of the present study is to test the ability of visual analysis of sublingual microcirculation by nurses to predict needs for fluid challenge, vasopressors or transfusion in patients in shock. After ICU admission and study inclusion, the nurses in charge of the patient will perform a set of measurements of macrocirculatory and microcirculatory parameters every 4 h during the first three days after ICU admission and before and after every hemodynamic therapeutic intervention, such as fluid challenge, transfusion of red blood cells or change in catecholamine rate. The secondary outcomes are to test 1/ to test the ability of visual analysis of sublingual microcirculation to predict organ dysfunction (SOFA score), and 2/ to evaluate the relationship between hemodynamic macrovascular and microvascular parameters. Intensive care patients in shock who need sedation, mechanical ventilation and invasive hemodynamic monitoring (Pulse Contour Cardiac Output (PiCCO 2 device)) will be included. In addition, patients will be included only when patients will obviously stay more than 24 hours in the ICU.
Hemorrhagic shock is a pathologic state in which intravascular volume and oxygen delivery are impaired. During circulatory failure associated with hypovolemia and low cardiac output, redistribution of blood flow caused by increased vasoconstriction results in decreased perfusion of the skin. Skin temperature and capillary refill time has been advocated as a measure of peripheral perfusion.