Clinical Trials Logo

Shock, Hemorrhagic clinical trials

View clinical trials related to Shock, Hemorrhagic.

Filter by:
  • Terminated  
  • Page 1

NCT ID: NCT04814810 Terminated - Hemorrhage Clinical Trials

A 48 Subject Study Using Non-invasive Multi-Technology Measurements for Early Detection of Ongoing Hemorrhage

Start date: February 1, 2021
Phase:
Study type: Observational

Early detection of ongoing hemorrhage (OH) before onset of hemorrhagic shock is a universally acknowledged great unmet need, and particularly important after traumatic injury. Delays in the detection of OH are associated with a "failure to rescue" and a dramatic deterioration in prognosis once the onset of clinically frank shock has occurred. An early alert to the presence of OH would save countless lives. This is a single site study, enrolling 48 patients undergoing liver resection in a "no significant risk" prospective clinical trial to: 1) further identify a minimal subset of noninvasive measurement technologies necessary for the desired diagnostic performance, 2) validate the performance of our Phase I algorithm, and 3) re-train the algorithm to a Phase II human iteration. The main outcome variables are non-invasive measurements that will be used for machine learning, not real-time patient management. The data generated will be used later for discovery and validation in traditional and innovative machine learning.

NCT ID: NCT04663087 Terminated - Hemorrhage Clinical Trials

Feasibility of Evaluating XSTAT Use in the Prehospital Setting

PhoXSTAT
Start date: October 29, 2022
Phase: N/A
Study type: Interventional

This study evaluates the prehospital use of the XSTAT device to control bleeding in junctional wounds. Participants will be randomized to the use of XSTAT versus standard care.

NCT ID: NCT03477006 Terminated - Hemorrhagic Shock Clinical Trials

Pragmatic Prehospital Group O Whole Blood Early Resuscitation Trial

PPOWER
Start date: November 20, 2018
Phase: Phase 3
Study type: Interventional

Despite advances in trauma resuscitation, a paucity of therapeutic interventions are available early enough to reduce the downstream morbidity and mortality attributable to hemorrhage, shock and coagulopathy. Due to the time sensitive nature of the treatment of hemorrhage, the ideal resuscitation intervention would entail use of a blood product containing all essential hemostatic components, closest to time of injury, where prevention or reversal of the devastating downstream consequences of shock and coagulopathy can occur. This proposal will characterized the efficacy of whole blood resuscitation initiated in the prehospital setting to patients in hemorrhagic shock which represents this ideal intervention post-injury. These results will have great potential to dramatically change the way trauma resuscitation occurs today.

NCT ID: NCT02872428 Terminated - Trauma Clinical Trials

A Study to Evaluate the Safety and Tolerability of Valproic Acid in Trauma Patients(Part 2)

Start date: November 2016
Phase: Phase 1
Study type: Interventional

THIS IS THE SECOND PART OF A 2-PART STUDY. The purpose of the first part of this study was to determine the safety and tolerability of ascending doses of valproic acid (also known as Depacon) administered as intravenous infusion (IV) in doses ranging from 15 mg/kg to 250 mg/kg in healthy subjects. ID: VPA-C-002 The second part of the study will also be to determine the safety and tolerability of single ascending doses of valproic acid administered as IV in trauma subjects with hemorrhagic shock.

NCT ID: NCT01838863 Terminated - Trauma Clinical Trials

Control of Major Bleeding After Trauma Study

COMBAT
Start date: April 7, 2014
Phase: Phase 2
Study type: Interventional

Bleeding is the most avoidable cause of death in trauma patients. Up to one-third of severely injured trauma patients are found to be coagulopathic and forty percent of the mortality following severe injury is due to uncontrollable hemorrhage in the setting of coagulopathy. It has been established that early administration of fresh frozen plasma decreases mortality following severe injury, replacing lost coagulation factors, improving the coagulopathy and restoring blood volume. This study will determine if giving plasma to severely injured trauma patients during ambulance transport versus after arrival to the hospital will help reduce hemorrhage, thus decreasing both total blood product administration and mortality.

NCT ID: NCT00750997 Terminated - Clinical trials for Traumatic Brain Injury

Hypertonic Modulation of Inflammation Following Injury

Start date: November 2007
Phase: N/A
Study type: Observational

This project seeks to determine the effect of prehospital resuscitation with hypertonic saline vs. conventional crystalloids on the inflammatory response after injury. The leading cause of late mortality following injury is multiple organ dysfunction syndrome (MODS), which results from a dysfunctional inflammatory response after injury. Previous studies suggest that hypertonic saline may be beneficial by modulating this initial response and decreasing subsequent organ injury. This project takes advantage of a unique opportunity, afforded by an NIH-funded multi-center clinical trial of hypertonic resuscitation (conducted by the Resuscitation Outcomes Consortium), to obtain blood samples from patients enrolled in this trial to analyze inflammatory responses early after hypertonic vs. conventional resuscitation. This study was an ancillary study to the main randomized clinical trial and thus prospective observational in nature The proposed study will be carried out in experiments grouped in three Specific Aims: Aim 1 provides a thorough investigation of the immunomodulatory response following hypertonic resuscitation with regard to neutrophil, monocyte, and T cell responses at serial time points after injury and resuscitation. Aim 2 comprises experiments to investigate the mechanisms by which hypertonicity may alter inflammatory cell signaling. Aim 3 seeks to correlate the laboratory findings with clinical endpoints reflective of immune dysfunction including inflammation, organ failure, nosocomial infection, and sepsis. The investigators hypothesize that hypertonic resuscitation will be associated with modulation of the excessive inflammatory response seen after injury and thus will result in reduced rates of inflammatory organ injury.

NCT ID: NCT00328341 Terminated - Clinical trials for Traumatic Brain Injury

The Use of Tissue Oxygen Monitoring in Critically Injured Patients

Start date: April 2006
Phase: N/A
Study type: Observational

It is anticipated that the use of tissue oxygen monitoring to measure brain tissue oxygen and deltoid muscle oxygen will provide more precise information about focal brain ischemia and systemic hypoperfusion than current techniques and measures such as blood pressure, heart rate and intracranial pressure. Understanding the relationship between tissue oxygen tension collected from the brain and deltoid muscle in critically injured patients could lead to a broader understanding of the important metabolic and cellular events that occur following severe injury and the changes induced by therapeutic interventions. Furthermore, the use of interventions designed to improve tissue hypoxia, as measured by low brain or muscle tissue oxygen, may improve mortality or neurological recovery after systemic trauma or head trauma compared to current approaches that do not involve tissue metabolic monitoring.