Clinical Trials Logo

Clinical Trial Summary

Alterations of acid-base equilibrium are very common in critically ill patients and understanding their pathophysiology can be important to improve clinical treatment.


Clinical Trial Description

Acid-base equilibrium has been object of study for more than 100 years in medicine because of its relevance in patients' management and in determining their prognosis, especially in the ICU.

A concept closely related to acid-base equilibrium is that of "buffer", term used to define any substance able to limit the changes in pH caused by the addition or loss of alkali or acid.

Depending on its physiochemical features, every buffer has one or more pH (negative logarithm of hydrogen ion concentration) values where its ability to keep pH stable is maximal. These values are defined as Ka or semi equivalence points, i.e. the pH values where the buffer dissolved in solution is half in its associated form (AH) and half in its dissociated form (A-).

Several studies tried to determine the normal values of both concentration and Ka of ATOT. However, they did not lead to univocal results. Moreover, many of these values come from studies of veterinary medicine or are the result of theoretical estimates on human plasma.

Staempfli and Constable performed a single experimental study on human plasma in 2003. These authors, however, analyzed only isolated plasma, neglecting whole blood, and computed ATOT and Ka values of healthy volunteers, while Ka and ATOT values for critically ill patients with sepsis are still unknown.

Primary aim of the present study is to quantify the acidic dissociation constant (Ka) of isolated plasma of critically ill patients with sepsis, and compare these data with normal values, i.e. obtained from healthy controls. The investigators hypothesize that plasma of critically ill septic patients has a lower Ka and that, consequently, it undergoes higher pH variations for a given perturbation of the system (variation in carbon dioxide).

Secondary aim is to quantify the Ka of whole blood of critically ill patients with sepsis and compare these data with normal values, i.e. obtained from healthy controls. The investigators hypothesize that blood of critically ill septic patients has a lower Ka and that, consequently, it undergoes higher pH variations for a given perturbation of the system (variation in carbon dioxide).

Other aims of the study are:

- quantify the Ka of plasma and whole blood of non-septic patients admitted to the ICU and compare these results with the values of septic patients and healthy volunteers.

- define the normal concentration of weak non-carbonic acids (ATOT) in plasma of septic patients and compare it with data obtained in healthy volunteers and non-septic patients.

Finally, possible structural alteration of plasma proteins will be evaluated:

- Identification of differentially modified proteoforms of serum albumin and major plasma proteins by two-dimensional electrophoresis;

- High Performance Liquid Chromatography (HPLC) to identify different Redox-forms of albumin

- Spectrophotometric evaluation of modifications of ligand binding properties of serum albumin. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03966664
Study type Observational
Source Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico
Contact Thomas Langer, MD
Phone 0255033232
Email thomas.langer@unimi.it
Status Recruiting
Phase
Start date June 3, 2019
Completion date June 2021

See also
  Status Clinical Trial Phase
Active, not recruiting NCT05095324 - The Biomarker Prediction Model of Septic Risk in Infected Patients
Completed NCT02714595 - Study of Cefiderocol (S-649266) or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-resistant Gram-negative Pathogens Phase 3
Completed NCT03644030 - Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
Completed NCT02867267 - The Efficacy and Safety of Ta1 for Sepsis Phase 3
Completed NCT04804306 - Sepsis Post Market Clinical Utility Simple Endpoint Study - HUMC
Recruiting NCT05578196 - Fecal Microbial Transplantation in Critically Ill Patients With Severe Infections. N/A
Terminated NCT04117568 - The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
Completed NCT03550794 - Thiamine as a Renal Protective Agent in Septic Shock Phase 2
Completed NCT04332861 - Evaluation of Infection in Obstructing Urolithiasis
Completed NCT04227652 - Control of Fever in Septic Patients N/A
Enrolling by invitation NCT05052203 - Researching the Effects of Sepsis on Quality Of Life, Vitality, Epigenome and Gene Expression During RecoverY From Sepsis
Terminated NCT03335124 - The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock Phase 4
Recruiting NCT04005001 - Machine Learning Sepsis Alert Notification Using Clinical Data Phase 2
Completed NCT03258684 - Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock N/A
Recruiting NCT05217836 - Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
Completed NCT05018546 - Safety and Efficacy of Different Irrigation System in Retrograde Intrarenal Surgery N/A
Completed NCT03295825 - Heparin Binding Protein in Early Sepsis Diagnosis N/A
Not yet recruiting NCT06045130 - PUFAs in Preterm Infants
Not yet recruiting NCT05361135 - 18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in S. Aureus Bacteraemia N/A
Not yet recruiting NCT05443854 - Impact of Aminoglycosides-based Antibiotics Combination and Protective Isolation on Outcomes in Critically-ill Neutropenic Patients With Sepsis: (Combination-Lock01) Phase 3