View clinical trials related to Respiratory Insufficiency.
Filter by:An observational study will be conducted in 20 hospitalized surgical patients routinely managed with opioids for anesthesia and post-operative pain control. Trachea Sound Sensor measurements and reference respiratory measurements will be recorded and analyzed to develop diagnostic algorithms that produce a risk-index score that detects/predicts progression from mild hypoventilation, to moderate hypoventilation, to severe hypoventilation due to opioids and other medications that cause respiratory depression. Our current Trachea Sound Sensor (TSS) has a wired Sony commercial microphone integrated into a commercial pediatric stethoscope, coupled to the skin surface over the trachea at the sternal notch. The Trachea Sound Sensor will measure and record the sounds of air moving within the proximal trachea during inhalation and exhalation. The microphone signal will be converted into an accurate measurement of the patient's respiratory rate and tidal volume (during inhalation & exhalation) over time, to determine the minute ventilation trend, breathing patterns, apnea episodes, and degree of snoring (due to partial upper airway obstruction). A commercial respiratory facemask and two pneumotachs (gas flow sensors) will also be used to accurately and continuously measure the patient's respiratory rate and tidal volume (during inhalation & exhalation) to determine the minute ventilation trend, breathing patterns, and apnea episodes. TSS data and reference respiratory data will be collected prior to surgery with the patient breathing normally (baseline), in the Operating Room (OR) during the induction and maintenance of anesthesia, in the Post Anesthesia Care Unit (PACU), and on the general nursing floors of Thomas Jefferson University Hospital (TJUH). The sounds of air flowing through the proximal trachea will be correlated with the reference breathing measurements using signal processing methods to optimize the measurement accuracy of RR, TV, breathing pattern, apnea episodes, and degree of snoring. A commercial accelerometer may be coupled to the skin surface of the neck (with tape) to measure body position and activity level. The TSS and vital sign trend data will be analyzed to produce a Risk-Index Score every 30 seconds with alerts and alarms that warn the patient and caregivers about progressive Opioid Induced Respiratory Depression (OIRD).
To enable weaning from mechanical ventilation, two different strategies may be distinguished: continuous weaning and discontinuous weaning. There is a lack of evidence of the superiority of one of both strategies is currently weak among early neurological rehabilitation patients. To the best of our knowledge, only one study including stroke patients compared different weaning strategies and showed a significantly shorter duration of mechanical ventilation during continuous than during discontinuous weaning, which is in contrast to the results of the largest weaning study with patients on medical-surgical intensive care units. In addition, further inconsistent results were reported from studies with chronic obstructive pulmonary disease patients, which might be due to disease duration and/or duration of prior mechanical ventilation in the acute care hospital. This small number of studies with controversial results indicates that there is a considerable need for further research. The current study intended to compare the rehabilitation outcome of early neurological rehabilitation patients, weaned by different strategies (continuous vs. discontinuous) through a matched-pair analysis.
This study is designed to evaluate the effects of the coadministration of paroxetine or escitalopram with an opioid on ventilation. Ventilation will be assessed using a rebreathing methodology. This study will evaluate chronic and acute dosing of paroxetine and escitalopram combined with an opioid as well as chronic and acute dosing of the two drugs without coadministration of an opioid. This study is a 3-period, randomized, placebo-controlled crossover study conducted with 25 healthy participants. Each participant will receive each of the 3 treatments (placebo/oxycodone, paroxetine/oxycodone, escitalopram/oxycodone) in a randomized order.
Pain after acute burn injury is complex with much still not understood. The primary mechanism is believed to be nociceptive, but is interwoven with aspects of somatogenic, neuropathic, and psychogenic pathways. As such, opioid receptor agonists are an essential component for pain management after burn injury. The majority of wound care and dressing changes are completed in non-intubated patients and rates of respiratory depression concerning. Oliceridine is a biased, selective MOR agonist approved for treatment of acute pain. To date there is no literature of use in patients with burn injuries. While it should be effective, efficacy and the potential for reduced adverse events need to be quantified. Current practice and guidelines, plead for better analgesia for patients with burn injuries.
This is a single-center proof-of-concept clinical trial designed to establish the feasibility of transvenous phrenic-nerve stimulation (PNS) to maintain diaphragm activation over the first 24 hours and for up to seven days of mechanical ventilation in patients who are likely to require more than 48 hours of invasive mechanical ventilation.
There is a direct relationship between the sedative agent and the duration of ventilation.
Retrospective observational study performed in a internal medicine ward of a French university hospital. Included patients were hospitalized for acute shortness of breath who have benefited from a eFOCUS which was defined as a focused cardiac Ultrasound with utilization of Doppler measurements. The objectives were the therapeutic and diagnosis changes induced by eFoCUS. The primary endpoint was defined by the pooled introduction or discontinuation of diuretics, antibiotics or anticoagulants associated with eFoCUS results.
Multicenter, cluster randomized, controlled, open-label trial to assess if AnapnoGuard System can minimize tracheal microaspiration and the risk of ventilator-associated pneumonia when compared to standard treatment
As Acute respiratory failure (ARF) is a challenging serious condition especially when it necessitates intubation to deliver mechanical ventilation which is a fundamental strategy for supporting the respiratory function when the patient can't bear all work of breathing. Even if it represents a life-saving procedure, mechanical ventilation (MV) is associated to life-threatening complications as respiratory muscle dysfunction, and atrophy that lead to long stay in intensive care unit (ICU) and higher mortality. Weaning difficulty is experienced in nearly 30 percent of critically ill patients. The decision to extubate mechanically ventilated patients should be aimed at preventing both the risk of premature liberation from MV which is associated with poor outcome and the risk of delayed extubation which increases the complications of prolonged MV and there is increasing evidence that MV itself may adversely affect the diaphragm's structure and function, which has been termed ventilator-induced diaphragmatic dysfunction (VIDD). The combination of positive pressure ventilation and positive end-expiratory pressure may unload the diaphragm which leads to changes in myofibril length and rapid atrophy that occurs within hours of MV, caused by an imbalance between protein synthesis and proteolysis, lead to a large reduction in the inspiratory pressure generated by the diaphragm.
Database study of the adherence to treatment to non-invasive mechanical ventilation