Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT01985685
Other study ID # 2013P000240
Secondary ID
Status Completed
Phase Phase 2
First received November 11, 2013
Last updated September 7, 2017
Start date October 2013
Est. completion date December 2016

Study information

Verified date September 2017
Source Beth Israel Deaconess Medical Center
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The objective of this study is to determine the effect of thiamine therapy on oxygen consumption (VO2) in critically-ill patients. We will evaluate this by measuring VO2 before and after thiamine or placebo administration in patients admitted to the ICU and requiring mechanical ventilation. A secondary aim is to evaluate the effect of thiamine vs. placebo on the metabolic profile of the patients.


Description:

Extensive research has been done over the past two decades looking at the role of oxygen delivery (DO2) and oxygen utilization (VO2) in critical illness. VO2 depends on cardiac output, arterial oxygen content, and the body's ability to extract oxygen effectively from the blood. Oxygen demand rises in critical illness as the body goes into a catabolic state, and lower VO2 has been associated with higher lactate levels and with poorer outcomes. Although increasing DO2 was shown in past studies to raise VO2 in some patients, other investigators have found that many critically-ill patients failed to demonstrate a rise in VO2 in spite of achieving supranormal values of cardiac index (CI) and DO2. This group, in contrast to patients whose VO2 rose with the increase in CI and DO2, had exceedingly poor outcomes, suggesting that an inability to extract oxygen from the blood confers a poorer prognosis.

Thiamine deficiency can manifest in several ways, but the syndrome of wet beriberi, caused by thiamine deficiency, includes lactic acidosis, cardiac decompensation and vasodilatory shock, similar to sepsis and other forms of critical illness. The mechanism by which thiamine deficiency causes dysfunction rests upon the vitamin's essential role in the Krebs cycle and Pentose Phosphate Pathway. Lack of adequate thiamine results in the failure of pyruvate to enter the Krebs Cycle, thus preventing aerobic metabolism. The resulting decrease in aerobic metabolism and increase in anaerobic metabolism leads to decreased oxygen consumption by the tissues and increased lactic acid production.

Our group has found previously that upwards of 20% of critically ill patients with sepsis are thiamine deficient within 72 hours of presentation. In a dog model of septic shock, Lindenbaum et al have shown that, regardless of thiamine levels, supplementation with thiamine improved not only lactate clearance and mean arterial pressure, but increased VO2 as well. An increase in VO2 max after administration of thiamine to healthy volunteers has also been described. In our prior open-label study, we found that the administration of a single dose of 200mg of intravenous thiamine to critically ill patients led to a statistically significant increase in VO2 in those with normal or elevated cardiac output, suggesting that thiamine may increase the extraction component of VO2, even in the absence of absolute thiamine deficiency. This effect was not seen in patients with low cardiac output.

VO2 is known to rise in inflammatory states, reflecting increased energy expenditure. Prior studies have shown that VO2 will decrease with interventions such as fever control. In spite of VO2 being higher than normal in critically-ill patients, however, the end-organ damage and lactic acidosis suggest that it is not high enough to meet the metabolic demands of the critically-ill body. If we are able to increase VO2 further in critically-ill patients, we could potentially help maintain aerobic metabolism and decrease tissue hypoxia and the resulting end-organ damage. Our hypothesis is that administering thiamine intravenously to critically-ill patients who do not have abnormally low cardiac index will increase VO2.

We will use an anesthesia monitor with a gas exchange module to measure VO2 continuously over a 9 hour period. After 3 hours of baseline VO2 data are collected, baseline thiamine level, lactate, and central venous O2 saturation will be obtained. A single dose of 200mg of IV thiamine will then be given, and 6 hours of post-thiamine data will then be collected. We will screen all consenting patients for whom we do not know the cardiac index with a non-invasive cardiac index measurement using the Cheetah non-invasive cardiac output monitor (NICOM). We will not include patients with a cardiac index less than or equal to 2.4L/min/m2, due to our preliminary data showing these patients did not increase VO2 in response to thiamine. All patients enrolled will have cardiac index monitored continuously during the study by the NICOM, in order to assess whether or not there is any relationship between VO2 and cardiac index. Patients will also have blood drawn for a metabolomic panel before and after thiamine or placebo to assess whether thiamine has an effect on the metabolome.


Recruitment information / eligibility

Status Completed
Enrollment 66
Est. completion date December 2016
Est. primary completion date May 2016
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria:

1. Adult patients (age > 18 yrs) admitted to an ICU

2. Mechanically ventilated for an acute illness, with stable respiratory status (no changes in ventilator settings in the 3 hours prior to enrollment)

3. Cardiac index >2.4L/min/m2 as measured by Noninvasive Cardiac Output Monitor(NICOM) by Cheetah Medical or, if being used clinically, by PA catheter or Vigileo device.

4. Upper central venous line in place

Exclusion Criteria:

1. Unstable ventilator settings during measurement of VO2

2. Temperature >100.5

3. FIO2>60%

4. Endotracheal cuff leak, chest tube, or other evident source of air leak

5. Positive end expiratory pressure > 12cmH2O

6. Intravenous thiamine supplementation within 2 weeks of enrollment, or oral supplementation more than that found in a multivitamin.

7. Protected populations (pregnant woman, prisoners, cognitively impaired)

Study Design


Intervention

Drug:
Thiamine
200 mg IV thiamine

Locations

Country Name City State
United States Beth Israel Deaconess Medical Center Boston Massachusetts

Sponsors (1)

Lead Sponsor Collaborator
Beth Israel Deaconess Medical Center

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Change in VO2 Over Time The primary outcome will be the change in VO2 over the 6 hours after administration of the study medication, adjusted for baseline VO2. 6 hrs
Secondary Percentage Change in Serum Lactate Percentage change in serum lactate 6 hrs
Secondary Change in Central Venous Oxygen Saturation Change in central venous oxygen saturation 6 hrs
See also
  Status Clinical Trial Phase
Completed NCT03909854 - Pragmatic Investigation of Volume Targeted Ventilation-1 N/A
Recruiting NCT03662438 - HOPE (Home-based Oxygen [Portable] and Exercise) for Patients on Long Term Oxygen Therapy (LTOT) N/A
Recruiting NCT05308719 - Nasal Oxygen Therapy After Cardiac Surgery N/A
Recruiting NCT05535543 - Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
Completed NCT04030208 - Evaluating Safety and Efficacy of Umbulizer in Patients Requiring Intermittent Positive Pressure Ventilation N/A
Recruiting NCT04668313 - COVID-19 Advanced Respiratory Physiology (CARP) Study
Recruiting NCT04542096 - Real Time Evaluation of Dynamic Changes of the Lungs During Respiratory Support of VLBW Neonates Using EIT
Recruiting NCT05883137 - High-flow Nasal Oxygenation for Apnoeic Oxygenation During Intubation of the Critically Ill
Completed NCT04505592 - Tenecteplase in Patients With COVID-19 Phase 2
Completed NCT03943914 - Early Non-invasive Ventilation and High-flow Nasal Oxygen Therapy for Preventing Delayed Respiratory Failure in Hypoxemic Blunt Chest Trauma Patients. N/A
Active, not recruiting NCT03472768 - The Impact of Age-dependent Haptoglobin Deficiency on Plasma Free Hemoglobin Levels During Extracorporeal Membrane Oxygenation Support
Not yet recruiting NCT04538469 - Absent Visitors: The Wider Implications of COVID-19 on Non-COVID Cardiothoracic ICU Patients, Relatives and Staff
Not yet recruiting NCT02542423 - Endocan Predictive Value in Postcardiac Surgery Acute Respiratory Failure. N/A
Completed NCT02265198 - Relationship of Pulmonary Contusion to Pulmonary Inflammation and Incidence of Acute Respiratory Distress Syndrome N/A
Completed NCT02105298 - Effect of Volume and Type of Fluid on Postoperative Incidence of Respiratory Complications and Outcome (CRC-Study) N/A
Completed NCT01885442 - TryCYCLE: A Pilot Study of Early In-bed Leg Cycle Ergometry in Mechanically Ventilated Patients N/A
Completed NCT01659268 - Performance of Baccalaureate Nursing Students in Insertion of Laryngeal Mask: a Trial in Mannequins N/A
Completed NCT02814994 - Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients N/A
Completed NCT01204281 - Proportional Assist Ventilation (PAV) in Early Stage of Critically Ill Patients Phase 4
Completed NCT01249794 - Non Invasive Ventilation After Cardiac Surgery N/A