View clinical trials related to Recurrent Adult Brain Tumor.
Filter by:The purpose of the study is to conduct research of a new PET radiopharmaceutical in cancer patients. The uptake of the novel radiopharmaceutical 18F-FPPRGD2 will be assessed in study participants with glioblastoma multiforme (GBM), gynecological cancers, and renal cell carcinoma (RCC) who are receiving antiangiogenesis treatment.
This phase II trial studies how well dovitinib works in treating patients with recurrent or progressive glioblastoma. Dovitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth
This randomized phase II trial studies how well bevacizumab with or without radiation therapy works in treating patients with recurrent glioblastoma. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry cancer-killing substances to them. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. It is not yet know whether bevacizumab is more effective with or without radiation therapy in treating patients with recurrent glioblastoma
This study is being done to evaluate the toxicity and safety of carboplatin administered by convection enhanced delivery into the tumor in patients with high grade glial neoplasms. This study is a dose escalating study, (the dose of the study drug is increased at set time points). Carboplatin is in a class of drugs known as platinum-containing compounds; it slows or stops the growth of cancer cells in your body. Convection enhanced delivery involves placing one or more catheters into the brain and delivering chemotherapy through those catheters directly into the brain
The primary purpose of this phase II clinical trial is to determine the safety and effect on survival of patients autologous dendritic cells pulsed with autologous tumor lysate as a treatment for low-grade glioma patients. Other goals of this study are to determine if the vaccine can cause an immune response against patients' cancer cells and slow the growth of their brain tumors
The purpose of this study is to investigate the safety and performance of an investigational agent, known as 5-ALA or Gliolan (aminolevulinic acid), that many be useful to a surgeon for visualizing a tumor during surgery. It is also being studied to determine if there are differences in what Gliolan shows a surgeon compared to intraoperative magnetic resonance imaging (MRI)
This clinical trial is studying magnetic resonance spectroscopy imaging in predicting response in patients to vorinostat and temozolomide in patients with recurrent, progressive, or newly diagnosed glioblastoma. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may also help temozolomide work better by making tumor cells more sensitive to the drug. Imaging procedures, such as magnetic resonance spectroscopy imaging, may help measure the patient's response to vorinostat and temozolomide and allow doctors to plan better treatment.
This phase I trial is studying the side effects and best dose of RO4929097 in treating patients with recurrent invasive gliomas. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth
This clinical trial studies yoga therapy in treating patients with malignant brain tumors. Yoga therapy may improve the quality of life of patients with brain tumors
RATIONALE: Bafetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This clinical trial studies bafetinib in treating patients with recurrent high-grade glioma or brain metastases.