View clinical trials related to Recurrent Adult Brain Tumor.
Filter by:This phase I/II trial is studying the side effects and the best dose of RO4929097 to see how well it works when given together with bevacizumab compared to bevacizumab alone in treating patients with progressive or recurrent malignant glioma. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving RO4929097 together with bevacizumab may kill more tumor cells.
RATIONALE: Genetically-modified neural stem cells (NSCs) that convert 5-fluorocytosine (5-FC) into the chemotherapy agent 5-FU (fluorouracil) at sites of tumor in the brain may be an effective treatment for glioma. PURPOSE: This clinical trial studies genetically-modified NSCs and 5-FC in patients undergoing surgery for recurrent high-grade gliomas.
This phase I trial is studying the side effects and best dose of aminolevulinic acid during surgery in treating patients with malignant brain tumors. Aminolevulinic acid becomes active when it is exposed to a certain kind of light and may help doctors find and remove tumor cells during surgery
RATIONALE: Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. PURPOSE: This phase II trial is studying how well bevacizumab works in treating patients with recurrent or progression meningiomas.
This phase II trial is studying how well gamma-secretase/Notch signalling pathway inhibitor RO4929097 works in treating patients with recurrent or progressive glioblastoma. Gamma-secretase/Notch signalling pathway inhibitor RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial is studying the side effects and best dose of erlotinib hydrochloride when given with isotretinoin in treating patients with recurrent malignant glioma. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Isotretinoin may help cells that are involved in the body's immune response to work better. Giving erlotinib hydrochloride together with isotretinoin may kill more tumor cells
RATIONALE: Specialized radiation therapy, such as proton beam radiation therapy, that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. PURPOSE: This phase I/II trial is studying the best way to give proton beam radiation therapy and to see how well it works in treating patients with low grade gliomas.
This randomized phase II trial is studying how well GDC-0449 works in treating patients with recurrent glioblastoma multiforme that can be removed by surgery. GDC-0449 may be effective in treating patients with glioblastoma multiforme.
This phase I trial is studying the side effects and best dose of aflibercept when given together with radiation therapy and temozolomide in treating patients with newly diagnosed or recurrent glioblastoma multiforme, gliosarcoma, or other malignant glioma. Aflibercept may stop the growth of tumor cells by blocking blood flow to the tumor. Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving aflibercept together with radiation therapy and temozolomide may kill more tumor cells.
This phase II trial is studying how well giving vorinostat together with bortezomib works in treating patients with progressive, recurrent glioblastoma multiforme. Vorinostat and bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving vorinostat together with bortezomib may kill more tumor cells.