Clinical Trials Logo

Pulmonary Injury clinical trials

View clinical trials related to Pulmonary Injury.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT05414370 Recruiting - Acute Lung Injury Clinical Trials

Hyperoxia Induced Pulmonary Inflammation and Organ Injury: a Human in Vivo Model

Start date: December 2, 2022
Phase: N/A
Study type: Interventional

Oxygen is the most commonly administered therapy in critical illness. Accumulating evidence suggests that patients often achieve supra-physiological levels of oxygenation in the critical care environment. Furthermore, hyperoxia related complications following cardiac arrest, myocardial infarction and stroke have also been reported. The underlying mechanisms of hyperoxia mediated injury remain poorly understood and there are currently no human in vivo studies exploring the relationship between hyperoxia and direct pulmonary injury and inflammation as well as distant organ injury. The current trial is a mechanistic study designed to evaluate the effects of prolonged administration of high-flow oxygen (hyperoxia) on pulmonary and systemic inflammation. The study is a randomised, double-blind, placebo-controlled trial of high-flow nasal oxygen therapy versus matching placebo (synthetic medical air). We will also incorporate a model of acute lung injury induced by inhaled endotoxin (LPS) in healthy human volunteers. Healthy volunteers will undergo bronchoalveolar lavage (BAL) at 6 hours post-intervention to enable measurement of pulmonary and systemic markers of inflammation, oxidative stress and cellular injury.

NCT ID: NCT05316727 Recruiting - Acute Lung Injury Clinical Trials

Electronic Nicotine Delivery Devices and Potential Progression to Acute Lung Injury

ENDALI
Start date: November 15, 2021
Phase:
Study type: Observational

This is an observational - data and specimen collection study. There have been increasing reports of vaping-induced lung injury, including severe lung injury and rare cases of death. The mechanism by which vaping contributes to lung injury in susceptible persons is unknown, as is impact on chronic lung disease. The investigators aim to identify individuals with chronic electronic nicotine delivery device (ENDD) exposure and matched controls within our ongoing cohort of HIV+ and HIV-uninfected individuals, collect PFT data, bank respiratory and stool samples and collect clinical data for studies of clinical risk, inflammation, biomarkers, and the microbiome in the identification and modification of risk of progression to lung injury or chronic pulmonary disease.