Clinical Trials Logo

Clinical Trial Summary

The pulmonary hypertension (HTP) due to a left heart disease or a hypoxemiant lung disease is frequent in cardiac surgery. The HTP represents an independent risk factor of morbidity and mortality in cardiac surgery, entering to the criteria of Euroscore evaluation (European System for Cardiac Operative Risk Evaluation).

An acute perioperative hemodynamic decompensation of these patients is frequent. Perioperative hemodynamic modifications, hypoxemia, hypercapnia, sympathetic stimulation, increase pulmonary vascular resistances (RVP) and might provoke right ventricular failure.

The anesthetic induction and the beginning of mechanical ventilation are the most sensible times due to the risk of hemodynamic decompensation. The suppression of the sympathetic tonus which is consequence of the anesthetic induction, decrease the systemic vascular resistances and lead to decrease of blood pressure. In return, the anesthetic induction is associated with an increase of pulmonary vascular resistances, resulting in increase of the postcharge and the work of the right ventricle (VD). These systemic and pulmonary hemodynamic modifications can lead to equalization, or even an inversion of the systemic and pulmonary pressures. As consequence, a hemodynamic collapse or even a heart arrest can arise.

The patients suffering from HTP are hypoxemic. They have very limited oxygen reserves due to decrease of the functional residual capacity (CRF). The apnea period, which follows the anesthetic induction, is often associated with a fast desaturation, even if a good pre-oxygenation was performed before. This desaturation causes an increase of the pulmonary vascular resistances with the hemodynamic consequences previously mentioned. A risk of hypoxic heart arrest is also present.

Nitric Oxide (NO) is an endogenous mediator produced from the vascular endothelium. The NO is a powerful vasodilator and is used in intensive care in inhaled way as selective pulmonary vasodilator (iNO). NO decreases the RVP, the shunt effect and improves the oxygenation by optimization of ventilation-perfusion ratio. The short lifetime of iNO (6sec approximately) allows a fast metabolism without inducing any undesirable effects such as the systemic hypotension.

No studies, until now, have investigated the use of iNO in pre-oxygenation before anesthetic induction in cardiac surgery.

We hope to demonstrate that iNO used in oxygenation before anesthetic induction will have a beneficial effect on the respiratory and cardiovascular parameters.

Our objective is to estimate the feasibility and the tolerance of iNO before anesthetic induction of the patients with a moderate or severe HTP programmed for cardiac surgery with extracorporeal circulation. The effect will be estimated in terms of efficiency (hemodynamic and respiratory optimization).


Clinical Trial Description

Before the anesthetic induction every included patient will follow these protocol:

- Standard monitoring (ECG Electrocardiogram, SpO2 Pulsed oxygen saturation)

- Insertion of radial arterial line and periferic IV line under local anesthesia,

- Insertion of a internal jugular central line and Swan Ganz catheter under local anesthesia

- Preoxygenation in 100% oxygen for 10 min

- Further preoxygenation with a mixture of 100% oxygen associated with the iNO in a dose of 1,2 L / mn.

- Anesthesia induction and initiation of mechanical ventilation.

- Progressive decrease of iNO dose and stop of iNO administration. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02345616
Study type Interventional
Source University Hospital, Clermont-Ferrand
Contact Patrick LACARIN
Phone 04 73 75 11 95
Email placarin@chu-clermontferrand.fr
Status Recruiting
Phase Phase 2
Start date February 2015
Completion date December 2019

See also
  Status Clinical Trial Phase
Withdrawn NCT01950585 - Hydroxyurea in Pulmonary Arterial Hypertension Early Phase 1
Completed NCT00527163 - Role of Nitric Oxide in Malaria
Completed NCT03649932 - Enteral L Citrulline Supplementation in Preterm Infants - Safety, Efficacy and Dosing Phase 1
Recruiting NCT04554160 - Arrhythmias in Pulmonary Hypertension Assessed by Continuous Long-term Cardiac Monitoring
Enrolling by invitation NCT03683186 - A Study Evaluating the Long-Term Efficacy and Safety of Ralinepag in Subjects With PAH Via an Open-Label Extension Phase 3
Completed NCT01894035 - Non-interventional Multi-center Study on Patients Under Routine Treatment of Pulmonary Arterial Hypertension (PAH) With Inhaled Iloprost Using I-Neb as a Device for Inhalation
Not yet recruiting NCT04083729 - Persistent Pulmonary Hypertension After Percutaneous Mitral Commissurotomy N/A
Terminated NCT02246348 - Evaluating Lung Doppler Signals in Patients With Systemic Sclerosis (SSc) N/A
Terminated NCT02243111 - Detecting Pulmonary Arterial Hypertension (PAH) in Patients With Systemic Sclerosis (SSc) by Ultrasound N/A
Completed NCT02821156 - Study on the Use of Inhaled NO (iNO) N/A
Completed NCT02216279 - Phase-II Study of the Use of PulmoBind for Molecular Imaging of Pulmonary Hypertension Phase 2
Recruiting NCT01913847 - Safety and Efficacy Study of HGP1207 in Patients With Pulmonary Hypertension Phase 3
Completed NCT06240871 - Contrast Enhanced PA Pressure Measurements
Completed NCT01615484 - Ex-vivo Perfusion and Ventilation of Lungs Recovered From Non-Heart-Beating Donors to Assess Transplant Suitability N/A
Completed NCT02377934 - Evaluation of Radiation Induced Pulmonary Hypertension Using MRI in Stage III NSCLC Patients Treated With Chemoradiotherapy. A Pilot Study
Recruiting NCT01091012 - Effectiveness of the Vasodilator Test With Revatio, Made in Patients With Acute Pulmonary Hypertension Phase 3
Completed NCT02275793 - The Regulation of Pulmonary Vascular Resistance in Patients With Heart Failure
Completed NCT01484899 - Smoking: a Risk Factor for Pulmonary Arterial Hypertension? N/A
Completed NCT00739375 - The Effect of Blood Flow in the Maturing Arteriovenous Access for Hemodialysis on the Development of Pulmonary Hypertension. Phase 1
Completed NCT01463514 - Noninvasive Determination of Cerebral Tissue Oxygenation in Pulmonary Hypertension N/A