Clinical Trials Logo

Clinical Trial Details — Status: Terminated

Administrative data

NCT number NCT01725256
Other study ID # AIR001-CS05
Secondary ID
Status Terminated
Phase Phase 2
First received November 8, 2012
Last updated April 7, 2014
Start date November 2012
Est. completion date February 2014

Study information

Verified date April 2014
Source Aires Pharmaceuticals, Inc.
Contact n/a
Is FDA regulated No
Health authority United States: Food and Drug AdministrationEuropean Union: European Medicines AgencyAustralia: Department of Health and Ageing Therapeutic Goods Administration
Study type Interventional

Clinical Trial Summary

The purpose of this study is to evaluate the safety and effectiveness of an investigational/experimental drug called AIR001.

To test the effectiveness, the study will evaluate how AIR001 affects the blood vessels in the lungs and the function of the heart. This will be done by monitoring changes in Pulmonary Vascular Resistance (PVR); from Baseline/Day 1 (start of study drug) to Week 16 of the study. PVR measures the resistance to flow in the blood vessels of the lungs. The study will include other assessments to evaluate the effect of the study drug on PAH, including measurements of exercise ability and evaluations of PAH disease symptoms.


Description:

The primary objective of this study is to evaluate the efficacy of inhaled nebulized AIR001 administered, for 16 weeks, according to 3 treatment arms (80 mg once daily, 46 mg 4 times daily, or 80 mg 4 times daily) in subjects with World Health Organization (WHO) Group 1 Pulmonary Arterial Hypertension (PAH), as determined by change in Pulmonary Vascular Resistance (PVR) from Baseline to Week 16 measured immediately post completion of AIR001 nebulization (as soon as feasible).


Recruitment information / eligibility

Status Terminated
Enrollment 29
Est. completion date February 2014
Est. primary completion date February 2014
Accepts healthy volunteers No
Gender Both
Age group 18 Years to 75 Years
Eligibility Inclusion Criteria:

1. Signed and dated informed consent document

2. Able to comply with study procedures

3. Diagnosis of PAH as classified by:

1. Idiopathic (IPAH) or heritable(HPAH); or

2. PAH associated with CTD; Systemic Sclerosis, Limited Scleroderma, Mixed, SLE, or overlap syndrome;

3. PAH associated with HIV ii. Simple, congenital shunts at least one year post repair. iii. Exposure to legal drugs, chemicals and toxins

4. Cardiac catheterization prior to Screening with:

1. mPAP = 25 mmHg (at rest);

2. PCWP = 15 mmHg; and

3. PVR > 3 mmHg/L/min or 240 dyn.sec/cm5

5. A qualification cardiac catheterization, to confirm the persistence and severity of PAH, if the diagnostic catheterization was performed more than 30 days prior to Baseline

1. Confirms diagnosis;

2. PVR above 300 dyn.sec/cm5 to demonstrate the persistence and severity of PAH; and

3. No change in disease-specific PAH therapy since the qualification catheterization used

6. Newly diagnosed PAH on no disease-specific PAH therapy or previously diagnosed on oral disease-specific PAH therapy for 90 days prior with either an ETRA and/or PDE-5i

7. Has PFTs within 180 days prior to Baseline with no evidence of significant parenchymal lung disease defined as:

- FEV1 = 70% (predicted) (pre-bronchodilators);

- FEV1/FVC = 70% (pre-bronchodilators); or

- Total lung capacity < 70% (predicted).

8. Has WHO/NYHA FC II- IV.

9. = 18 and = 75 years.

10. Weight = 40 kg.

11. Has 6MWT distance at least 50 meters.

12. Had a V/Q scan or pulmonary angiogram prior to Screening that shows no evidence of thromboembolic disease

13. If on the following: vasodilators (including calcium channel blockers), digoxin, spironolactone, or L-Arginine; must be on a stable dose 30 days prior to Baseline and maintained throughout the study

14. If on corticosteroids, has been receiving a stable dose of = 20 mg/day of prednisone (or equivalent dose, if other corticosteroid) for at least 30 days

15. Women of childbearing potential must be using at least one form of medically acceptable contraception. Women who are surgically sterile or those who are post-menopausal for at least 2 years are not considered to be of childbearing potential. Men who are not sterile must also agree to use contraception

Exclusion Criteria:

1. Participation in a device or other interventional clinical studies, within 30 days of Baseline and during study participation

2. Participation in a cardio-pulmonary rehabilitation program based upon exercise within 30 days prior to Baseline and/or during the study

3. Has uncontrolled systemic hypertension: SBP > 160 millimeter of mercury (mmHg) or DBP > 100 mmHg during Screening

4. SBP < 90 mmHg at Screening or Baseline

5. History of orthostatic hypotension or at the time of Screening; defined as a drop in SBP by = 20 mmHg or DBP of = 10 mmHg during Screening

6. History of left-sided heart disease and/or clinically significant cardiac disease, including:

1. Aortic or mitral valve disease (stenosis or regurgitation) defined as greater than mild;

2. Pericardial constriction;

3. Restrictive or congestive cardiomyopathy;

4. Left ventricular ejection fraction < 40%

5. Left ventricular shortening fraction < 22% by ECHO prior to Screening;

6. Symptomatic coronary disease

7. Significant (2+ for regurgitation) valvular disease other than TR or PR

8. Acutely decompensated heart failure within 30 days prior to Baseline

9. History of atrial septostomy within 180 days prior to Baseline

10. History of obstructive sleep apnea (treated, untreated or resolved)

11. Diagnosis of Down syndrome

12. Moderate to severe hepatic impairment

13. Has chronic renal insufficiency as defined by serum creatinine > 2.5 mg/dL or has an eGFR < 30 mL/min at Screening, or requires dialysis

14. Has a Hgb concentration < 8.5 g/dL at Screening

15. Personal or family history of the following:

1. Congenital or acquired methemoglobinemia;

2. RBC CYPB5 reductase deficiency

16. G6PD deficiency or any contraindication to receiving methylene blue

17. For subjects with HIV any of the following:

- Concomitant active opportunistic infections 180 days prior to Screening;

- Detectable viral load within 90 days of Screening;

- T-cell count < 200 mm3 within 90 days of Screening;

- Changes in antiretroviral regimen within 90 days of Screening;

- Using inhaled pentamidine

18. Receiving chronic treatment with prostacyclin/prostacyclin analogue within 60 days of Baseline

19. Requirement of intravenous inotropes within 30 days prior to Baseline

20. The use of oral or topical nitrates (nitroglycerin, glyceryl trinitrate (GTN), isosorbide dinitrate, and isosorbide mononitrate) within 30 days prior to Baseline and until EOS or Termination

21. Known or suspected hypersensitivity or allergic reaction to sodium nitrite or sodium nitrate

22. History of malignancy within 5-years prior to Baseline

23. Other severe acute or chronic medical or laboratory abnormality that may increase the risk associated with study participation

24. Has a disorder that compromises the ability to give informed consent

25. Is currently pregnant or breastfeeding or intends to become pregnant

26. Investigators, study staff or their immediate families

Study Design

Allocation: Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


Intervention

Drug:
AIR001 (sodium nitrite inhalation solution)
Dose arms specify dose loaded into the I-neb AAD System nebulizer

Locations

Country Name City State
Australia The Prince Charles Hospital Chermside Queensland
Australia St. Vincent's Hospital Darlinghurst New South Wales
Australia Royal Hobart Hospital Hobart Tasmania
Australia The Alfred Hospital Melbourne Victoria
Hungary Gottsegen Gyorgy Hungarian Budapest
Hungary Semmelweis Karlocai Budapest
Hungary University of Debrecen Debrecen
Hungary University of Szeged Szeged
United States University of Colorado Denver Aurora Colorado
United States University of Maryland Medical Center Baltimore Maryland
United States Boston University School of Medicine Boston Massachusetts
United States Brigham and Women's Hospital Boston Massachusetts
United States Tufts Medical Center Boston Massachusetts
United States University of Cincinnati Cincinnati Ohio
United States The Ohio State University Medical Center Columbus Ohio
United States University of Texas Southwestern Medical Center Dallas Texas
United States Duke University Medical Center Durham North Carolina
United States Inova Fairfax Hospital Falls Church Virginia
United States Baylor College of Medicine Houston Texas
United States UCSD Medical Center La Jolla California
United States Kentuckiana Pulmonary Associates Louisville Kentucky
United States Aurora St. Luke's Medical Center Milwaukee Wisconsin
United States University of Pittsburgh Medical Center Pittsburgh Pennsylvania
United States Washington University School of Medicine St. Louis Missouri
United States UCLA Medical Center Torrance California

Sponsors (1)

Lead Sponsor Collaborator
Aires Pharmaceuticals, Inc.

Countries where clinical trial is conducted

United States,  Australia,  Hungary, 

References & Publications (61)

Ahanchi SS, Tsihlis ND, Kibbe MR. The role of nitric oxide in the pathophysiology of intimal hyperplasia. J Vasc Surg. 2007 Jun;45 Suppl A:A64-73. Review. — View Citation

Alef MJ, Vallabhaneni R, Carchman E, Morris SM Jr, Shiva S, Wang Y, Kelley EE, Tarpey MM, Gladwin MT, Tzeng E, Zuckerbraun BS. Nitrite-generated NO circumvents dysregulated arginine/NOS signaling to protect against intimal hyperplasia in Sprague-Dawley rats. J Clin Invest. 2011 Apr;121(4):1646-56. doi: 10.1172/JCI44079. Epub 2011 Mar 23. — View Citation

ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002 Jul 1;166(1):111-7. — View Citation

Badesch DB, Champion HC, Sanchez MA, Hoeper MM, Loyd JE, Manes A, McGoon M, Naeije R, Olschewski H, Oudiz RJ, Torbicki A. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S55-66. doi: 10.1016/j.jacc.2009.04.011. Review. — View Citation

Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, Tarr J, Benjamin N, Jones AM. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol (1985). 2009 Oct;107(4):1144-55. doi: 10.1152/japplphysiol.00722.2009. Epub 2009 Aug 6. — View Citation

Barbosa PB, Ferreira EM, Arakaki JS, Takara LS, Moura J, Nascimento RB, Nery LE, Neder JA. Kinetics of skeletal muscle O2 delivery and utilization at the onset of heavy-intensity exercise in pulmonary arterial hypertension. Eur J Appl Physiol. 2011 Aug;111(8):1851-61. doi: 10.1007/s00421-010-1799-6. Epub 2011 Jan 12. — View Citation

Battistini B, Berthiaume N, Kelland NF, Webb DJ, Kohan DE. Profile of past and current clinical trials involving endothelin receptor antagonists: the novel "-sentan" class of drug. Exp Biol Med (Maywood). 2006 Jun;231(6):653-95. Review. — View Citation

Battle RW, Davitt MA, Cooper SM, Buckley LM, Leib ES, Beglin PA, Tischler MD. Prevalence of pulmonary hypertension in limited and diffuse scleroderma. Chest. 1996 Dec;110(6):1515-9. — View Citation

Bergstra A, van den Heuvel AF, Zijlstra F, Berger RM, Mook GA, van Veldhuisen DJ. Validation of Fick cardiac output calculated with assumed oxygen consumption: a study of cardiac output during epoprostenol. Neth Heart J. 2004 May;12(5):208-213. — View Citation

Channick RN, Olschewski H, Seeger W, Staub T, Voswinckel R, Rubin LJ. Safety and efficacy of inhaled treprostinil as add-on therapy to bosentan in pulmonary arterial hypertension. J Am Coll Cardiol. 2006 Oct 3;48(7):1433-7. Epub 2006 Sep 14. — View Citation

Chaouat A, Bugnet AS, Kadaoui N, Schott R, Enache I, Ducoloné A, Ehrhart M, Kessler R, Weitzenblum E. Severe pulmonary hypertension and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005 Jul 15;172(2):189-94. Epub 2005 Apr 14. — View Citation

Clozel M, Breu V, Gray GA, Kalina B, Löffler BM, Burri K, Cassal JM, Hirth G, Müller M, Neidhart W, et al. Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J Pharmacol Exp Ther. 1994 Jul;270(1):228-35. — View Citation

Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO 3rd, Gladwin MT. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003 Dec;9(12):1498-505. Epub 2003 Nov 2. — View Citation

Dejam A, Hunter CJ, Tremonti C, Pluta RM, Hon YY, Grimes G, Partovi K, Pelletier MM, Oldfield EH, Cannon RO 3rd, Schechter AN, Gladwin MT. Nitrite infusion in humans and nonhuman primates: endocrine effects, pharmacokinetics, and tolerance formation. Circulation. 2007 Oct 16;116(16):1821-31. Epub 2007 Sep 24. — View Citation

Farber HW, Loscalzo J. Pulmonary arterial hypertension. N Engl J Med. 2004 Oct 14;351(16):1655-65. Review. — View Citation

Ghofrani HA, Barst RJ, Benza RL, Champion HC, Fagan KA, Grimminger F, Humbert M, Simonneau G, Stewart DJ, Ventura C, Rubin LJ. Future perspectives for the treatment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S108-17. doi: 10.1016/j.jacc.2009.04.014. Review. — View Citation

Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med. 1995 Jul 27;333(4):214-21. — View Citation

Gielis JF, Lin JY, Wingler K, Van Schil PE, Schmidt HH, Moens AL. Pathogenetic role of eNOS uncoupling in cardiopulmonary disorders. Free Radic Biol Med. 2011 Apr 1;50(7):765-76. doi: 10.1016/j.freeradbiomed.2010.12.018. Epub 2010 Dec 21. Review. — View Citation

Gladwin MT, Raat NJ, Shiva S, Dezfulian C, Hogg N, Kim-Shapiro DB, Patel RP. Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. Am J Physiol Heart Circ Physiol. 2006 Nov;291(5):H2026-35. Epub 2006 Jun 23. Review. — View Citation

Gladwin MT, Vichinsky E. Pulmonary complications of sickle cell disease. N Engl J Med. 2008 Nov 20;359(21):2254-65. doi: 10.1056/NEJMra0804411. Review. — View Citation

Hassoun PM, Mouthon L, Barberà JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, Newman JH, Rabinovitch M, Schermuly R, Stenmark KR, Voelkel NF, Yuan JX, Humbert M. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S10-9. doi: 10.1016/j.jacc.2009.04.006. Review. — View Citation

Hassoun PM. Pulmonary arterial hypertension complicating connective tissue disease. In: Humbert, M, Lynch JP, Eds. Pulmonary Hypertension. New York: Informa Healthcare USA, Inc. 2010: 161-175

Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol. 2004 Jun 16;43(12 Suppl S):13S-24S. Review. — View Citation

Humbert M, Sitbon O, Simonneau G. Treatment of pulmonary arterial hypertension. N Engl J Med. 2004 Sep 30;351(14):1425-36. Review. — View Citation

Hunter CJ, Dejam A, Blood AB, Shields H, Kim-Shapiro DB, Machado RF, Tarekegn S, Mulla N, Hopper AO, Schechter AN, Power GG, Gladwin MT. Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator. Nat Med. 2004 Oct;10(10):1122-7. Epub 2004 Sep 12. — View Citation

Kiowski W, Sütsch G, Hunziker P, Müller P, Kim J, Oechslin E, Schmitt R, Jones R, Bertel O. Evidence for endothelin-1-mediated vasoconstriction in severe chronic heart failure. Lancet. 1995 Sep 16;346(8977):732-6. — View Citation

Krowka MJ, Swanson KL, Frantz RP, McGoon MD, Wiesner RH. Portopulmonary hypertension: Results from a 10-year screening algorithm. Hepatology. 2006 Dec;44(6):1502-10. — View Citation

Lansley KE, Winyard PG, Bailey SJ, Vanhatalo A, Wilkerson DP, Blackwell JR, Gilchrist M, Benjamin N, Jones AM. Acute dietary nitrate supplementation improves cycling time trial performance. Med Sci Sports Exerc. 2011 Jun;43(6):1125-31. doi: 10.1249/MSS.0b013e31821597b4. — View Citation

Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, Weitzberg E. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011 Feb 2;13(2):149-59. doi: 10.1016/j.cmet.2011.01.004. — View Citation

Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med. 2010 Jan 15;48(2):342-7. doi: 10.1016/j.freeradbiomed.2009.11.006. Epub 2009 Nov 12. — View Citation

Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol (Oxf). 2007 Sep;191(1):59-66. Epub 2007 Jul 17. — View Citation

Levi, DS, Scott V, et al. Pulmonary arterial hypertension in congenital heart disease. In: Humbert, M, Lynch, JP, Eds. Pulmonary Hypertension. New York: Informa Healthcare USA, Inc. 2010: 176-195.

Mainguy V, Maltais F, Saey D, Gagnon P, Martel S, Simon M, Provencher S. Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension. Thorax. 2010 Feb;65(2):113-7. doi: 10.1136/thx.2009.117168. Epub 2009 Aug 30. — View Citation

McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J; American College of Cardiology Foundation Task Force on Expert Consensus Documents; American Heart Association; American College of Chest Physicians; American Thoracic Society, Inc; Pulmonary Hypertension Association. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009 Apr 28;53(17):1573-619. doi: 10.1016/j.jacc.2009.01.004. — View Citation

Mehta NJ, Khan IA, Mehta RN, Sepkowitz DA. HIV-Related pulmonary hypertension: analytic review of 131 cases. Chest. 2000 Oct;118(4):1133-41. Review. — View Citation

Morrell NW, Adnot S, Archer SL, Dupuis J, Jones PL, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite PA, Weissmann N, Yuan JX, Weir EK. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S20-31. doi: 10.1016/j.jacc.2009.04.018. Review. — View Citation

Mukerjee D, St George D, Coleiro B, Knight C, Denton CP, Davar J, Black CM, Coghlan JG. Prevalence and outcome in systemic sclerosis associated pulmonary arterial hypertension: application of a registry approach. Ann Rheum Dis. 2003 Nov;62(11):1088-93. — View Citation

Olschewski H, Rohde B, Behr J, Ewert R, Gessler T, Ghofrani HA, Schmehl T. Pharmacodynamics and pharmacokinetics of inhaled iloprost, aerosolized by three different devices, in severe pulmonary hypertension. Chest. 2003 Oct;124(4):1294-304. — View Citation

Opravil M, Pechère M, Speich R, Joller-Jemelka HI, Jenni R, Russi EW, Hirschel B, Lüthy R. HIV-associated primary pulmonary hypertension. A case control study. Swiss HIV Cohort Study. Am J Respir Crit Care Med. 1997 Mar;155(3):990-5. — View Citation

Piazza G, Goldhaber SZ. Chronic thromboembolic pulmonary hypertension. N Engl J Med. 2011 Jan 27;364(4):351-60. doi: 10.1056/NEJMra0910203. Review. — View Citation

Pluta RM, Dejam A, Grimes G, Gladwin MT, Oldfield EH. Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA. 2005 Mar 23;293(12):1477-84. — View Citation

Pluta RM, Oldfield EH, Bakhtian KD, Fathi AR, Smith RK, Devroom HL, Nahavandi M, Woo S, Figg WD, Lonser RR. Safety and feasibility of long-term intravenous sodium nitrite infusion in healthy volunteers. PLoS One. 2011 Jan 10;6(1):e14504. doi: 10.1371/journal.pone.0014504. — View Citation

Ranque B, Authier FJ, Berezne A, Guillevin L, Mouthon L. Systemic sclerosis-associated myopathy. Ann N Y Acad Sci. 2007 Jun;1108:268-82. Review. — View Citation

Rubin LJ. Primary pulmonary hypertension. N Engl J Med. 1997 Jan 9;336(2):111-7. Review. — View Citation

Rubin LJ; American College of Chest Physicians. Diagnosis and management of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest. 2004 Jul;126(1 Suppl):7S-10S. — View Citation

Shiva S. Mitochondria as metabolizers and targets of nitrite. Nitric Oxide. 2010 Feb 15;22(2):64-74. doi: 10.1016/j.niox.2009.09.002. Epub 2009 Sep 27. Review. — View Citation

Shorr AF, Helman DL, Davies DB, Nathan SD. Pulmonary hypertension in advanced sarcoidosis: epidemiology and clinical characteristics. Eur Respir J. 2005 May;25(5):783-8. — View Citation

Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, Jing ZC, Krowka MJ, Langleben D, Nakanishi N, Souza R. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S43-54. doi: 10.1016/j.jacc.2009.04.012. Review. — View Citation

Sitbon O, Lascoux-Combe C, Delfraissy JF, Yeni PG, Raffi F, De Zuttere D, Gressin V, Clerson P, Sereni D, Simonneau G. Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era. Am J Respir Crit Care Med. 2008 Jan 1;177(1):108-13. Epub 2007 Oct 11. — View Citation

Smith AP, Demoncheaux EA, Higenbottam TW. Nitric oxide gas decreases endothelin-1 mRNA in cultured pulmonary artery endothelial cells. Nitric Oxide. 2002 Mar;6(2):153-9. — View Citation

Souza R, Humbert M, Sztrymf B, Jaïs X, Yaïci A, Le Pavec J, Parent F, Hervé P, Soubrier F, Sitbon O, Simonneau G. Pulmonary arterial hypertension associated with fenfluramine exposure: report of 109 cases. Eur Respir J. 2008 Feb;31(2):343-8. Epub 2007 Oct 24. Erratum in: Eur Respir J. 2008 Apr;31(4):912. — View Citation

Task Force for Diagnosis and Treatment of Pulmonary Hypertension of European Society of Cardiology (ESC); European Respiratory Society (ERS); International Society of Heart and Lung Transplantation (ISHLT), Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2009 Dec;34(6):1219-63. doi: 10.1183/09031936.00139009. Epub 2009 Sep 12. — View Citation

Tsihlis ND, Oustwani CS, Vavra AK, Jiang Q, Keefer LK, Kibbe MR. Nitric oxide inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by increasing the ubiquitination and degradation of UbcH10. Cell Biochem Biophys. 2011 Jun;60(1-2):89-97. doi: 10.1007/s12013-011-9179-3. — View Citation

Uhlmann D, Ludwig S, Escher E, Armann B, Gäbel G, Teupser D, Tannapfel A, Hauss J, Witzigmann H. Protective effect of a selective endothelin a receptor antagonist (BSF 208075) on graft pancreatitis in pig pancreas transplantation. Transplant Proc. 2001 Nov-Dec;33(7-8):3732-4. — View Citation

Vanhatalo A, Fulford J, Bailey SJ, Blackwell JR, Winyard PG, Jones AM. Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia. J Physiol. 2011 Nov 15;589(Pt 22):5517-28. doi: 10.1113/jphysiol.2011.216341. Epub 2011 Sep 12. — View Citation

Voswinckel R, Enke B, Reichenberger F, Kohstall M, Kreckel A, Krick S, Gall H, Gessler T, Schmehl T, Ghofrani HA, Schermuly RT, Grimminger F, Rubin LJ, Seeger W, Olschewski H. Favorable effects of inhaled treprostinil in severe pulmonary hypertension: results from randomized controlled pilot studies. J Am Coll Cardiol. 2006 Oct 17;48(8):1672-81. Epub 2006 Sep 26. — View Citation

Ware, JE, Kosinski, M, Dewey JE. How to Score Version Two of the SF-36 Health Survey. Lincoln, RI: QualityMetric, Incorporated, 2000.

Weber C, Schmitt R, Birnboeck H, Hopfgartner G, van Marle SP, Peeters PA, Jonkman JH, Jones CR. Pharmacokinetics and pharmacodynamics of the endothelin-receptor antagonist bosentan in healthy human subjects. Clin Pharmacol Ther. 1996 Aug;60(2):124-37. — View Citation

Weitzenblum E, Chaouat A. Severe pulmonary hypertension in COPD: is it a distinct disease? Chest. 2005 May;127(5):1480-2. — View Citation

Williamson DJ, Wallman LL, Jones R, Keogh AM, Scroope F, Penny R, Weber C, Macdonald PS. Hemodynamic effects of Bosentan, an endothelin receptor antagonist, in patients with pulmonary hypertension. Circulation. 2000 Jul 25;102(4):411-8. — View Citation

Zuckerbraun BS, George P, Gladwin MT. Nitrite in pulmonary arterial hypertension: therapeutic avenues in the setting of dysregulated arginine/nitric oxide synthase signalling. Cardiovasc Res. 2011 Feb 15;89(3):542-52. doi: 10.1093/cvr/cvq370. Epub 2010 Dec 22. Review. — View Citation

* Note: There are 61 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Change in pulmonary vascular resistance (PVR)from baseline to week 16 assessed at peak AIR001 The primary objective of this study is to evaluate the efficacy of inhaled nebulized AIR001 administered, for 16 weeks, according to 3 treatment arms (80 mg once daily, 46 mg 4 times daily, or 80 mg 4 times daily) in subjects with World Health Organization (WHO) Group 1 Pulmonary Arterial Hypertension (PAH), as determined by change in Pulmonary Vascular Resistance (PVR) from Baseline to Week 16 measured immediately post completion of AIR001 nebulization (as soon as feasible). 16 weeks Yes
Secondary Time to Clinical Worsening (TTCW), other hemodynamics, and safety To evaluate the effect of inhaled nebulized AIR001 administered according to 3 treatment arms (80 mg once daily, 46 mg 4 times daily, or 80 mg 4 times daily) in subjects with WHO Group 1 PAH for 16 weeks, as determined by time to the first morbidity/mortality event as defined in Time to Clinical Worsening (TTCW) assessments and change from Baseline to Week 16 in the following:
Pulmonary Vascular Resistance Index (PVRI), N-Terminal Pro-Brain Natriuretic Peptide (NT-proBNP), 6-Minute Walk Distance (6MWD) assessed at peak, 6MWD assessed prior to AIR001 nebulization (trough), Cardiac Output (CO), Cardiac Index (CI), Mean Right Atrial Pressure (mRAP), WHO/NYHA Functional Class (FC), Quality of Life (QOL) as measured by Short-Form 36 (SF-36), Borg Dyspnea Index, Mean pulmonary artery pressure (mPAP), PVR measured at trough, PVR/systemic vascular resistance (SVR) ratio at trough and peak,
To evaluate the safety and tolerability of AIR001 in subjects with WHO Group 1 PAH.
16 weeks Yes
See also
  Status Clinical Trial Phase
Completed NCT04076241 - Effects of Adding Yoga Respiratory Training to Osteopathic Manipulative Treatment in Pulmonary Arterial Hypertension N/A
Completed NCT05521113 - Home-based Pulmonary Rehabilitation With Remote Monitoring in Pulmonary Arterial Hypertension
Recruiting NCT04972656 - Treatment With Ambrisentan in Patients With Borderline Pulmonary Arterial Hypertension N/A
Completed NCT04908397 - Carnitine Consumption and Augmentation in Pulmonary Arterial Hypertension Phase 1
Active, not recruiting NCT03288025 - Pulmonary Arterial Hypertension Improvement With Nutrition and Exercise (PHINE) N/A
Completed NCT01959815 - Novel Screening Strategies for Scleroderma PAH
Recruiting NCT04266197 - Vardenafil Inhaled for Pulmonary Arterial Hypertension PRN Phase 2B Study Phase 2
Active, not recruiting NCT06092424 - High Altitude (HA) Residents With Pulmonary Vascular Diseseases (PVD), Pulmonary Artery Pressure (PAP) Assessed at HA (2840m) vs Sea Level (LA) N/A
Enrolling by invitation NCT03683186 - A Study Evaluating the Long-Term Efficacy and Safety of Ralinepag in Subjects With PAH Via an Open-Label Extension Phase 3
Terminated NCT02060487 - Effects of Oral Sildenafil on Mortality in Adults With PAH Phase 4
Terminated NCT02253394 - The Combination Ambrisentan Plus Spironolactone in Pulmonary Arterial Hypertension Study Phase 4
Withdrawn NCT02958358 - FDG Uptake and Lung Blood Flow in PAH Before and After Treatment With Ambrisentan N/A
Terminated NCT01953965 - Look at Way the Heart Functions in People With Pulmonary Hypertension (PH) Who Have Near Normal Right Ventricle (RV) Function and People With Pulmonary Hypertension Who Have Impaired RV Function. Using Imaging Studies PET Scan and Cardiac MRI. Phase 2
Not yet recruiting NCT01649739 - Vardenafil as add-on Therapy for Patients With Pulmonary Hypertension Treated With Inhaled Iloprost Phase 4
Unknown status NCT01712997 - Study of the Initial Combination of Bosentan With Iloprost in the Treatment of Pulmonary Hypertension Patients Phase 3
Withdrawn NCT01723371 - Beta Blockers for Treatment of Pulmonary Arterial Hypertension in Children Phase 1/Phase 2
Completed NCT01548950 - Drug Therapy and Surgery in Congenital Heart Disease With Pulmonary Hypertension N/A
Completed NCT01165047 - Nitric Oxide, GeNO Nitrosyl Delivery System Phase 2
Completed NCT00963027 - Effect of Esomeprazole on the Pharmacokinetics of Oral Treprostinil Phase 1
Completed NCT00963001 - Effect of Food on the Pharmacokinetics of Oral Treprostinil Phase 1