Clinical Trials Logo

Clinical Trial Summary

Pulmonary artery hypertension (PAH) is a rare, severe disease, characterized by a progressive increase in pulmonary vascular resistance ultimately leading to right ventricular (RV) failure and premature death. PAH may be idiopathic (IPAH) or may be also related to various conditions like portal hypertension, HIV infection, left to right shunt, connective tissue diseases such as scleroderma (PAHSSc). Symptoms include dyspnea and fatigue resulting in restricted exercise capacity and poor quality of life. The therapies currently approved have been shown to improve survival. Indeed, recent studies described a three year survival higher than 80%. This improved survival is associated with major challenges for clinicians as most patients remain with limited exercise capacity and poor quality of life. A clear understanding of exercise physiopathology is thus mandatory to specifically address mechanisms responsible for this exercise limitation and eventually improve patients' management. In order to better characterize the exercise physiopathology in PAH, the general objective of this research is to systematically examine blood flow distribution and limb muscles microcirculation at rest and during submaximal exercise in PAH.


Clinical Trial Description

Pulmonary artery hypertension (PAH) is a rare, severe disease, characterized by a progressive increase in pulmonary vascular resistance ultimately leading to right ventricular (RV) failure and premature death. PAH may be idiopathic (IPAH) or may be also related to various conditions like portal hypertension, HIV infection, left to right shunt, connective tissue diseases such as scleroderma (PAHSSc). PAH is defined as a mean pulmonary artery pressure (mPAP) of > 25 mmHg at rest. Symptoms include dyspnea and fatigue resulting in restricted exercise capacity and poor quality of life. The agents currently approved for treatment of PAH are prostanoids (i.v. epoprostenol or s.c./i.v. treprostinil), endothelin-receptor antagonists (ambrisentan, bosentan and sitaxsentan), and phosphodiesterase type 5-inhibitors (sildenafil and tadalafil). These therapies have been shown to improve pulmonary hemodynamics, exercise capacity, quality of life and survival. Indeed, recent studies described a three year survival higher than 80%. This improved survival is associated with major challenges for clinicians as most patients remain with limited exercise capacity and poor quality of life. A clear understanding of exercise physiopathology is thus mandatory to specifically address mechanisms responsible for this exercise limitation and eventually improve patients' management.

In order to better characterize the exercise physiopathology in PAH, the general objective of this research is to systematically examine blood flow distribution and limb muscles microcirculation at rest and during submaximal exercise in PAH. The limited link between traditional measures of pulmonary hemodynamic impairment and functional capacity confirms that exercise physiopathology in PAH is not well understood. Although peripheral muscle dysfunction and exercise intolerance are certainly multifactorial in origin and are unlikely to be explained by a single mechanism, an altered skeletal muscle microcirculation could represent a unifying mechanism to explain similarities in skeletal muscle dysfunction and exercise intolerance in PAH. The investigators plan to use a multimodality approach to provide comprehensive information regarding skeletal muscle perfusion in PAH. For example, the investigators will be able to know if there is some relationship between muscle perfusion heterogeneity (arterial spin labeling MRI) and microvascular oxygenation or muscle oxygen consumption (NIRS). Muscle oxygen delivery could also be influenced by cardiac function or hypoxemia. These methods should thus be viewed as complimentary and will help to separate differences in cardiac function, quadriceps global perfusion, perfusion heterogeneity and oxygenation and their consequences on skeletal muscle function and exercise tolerance in PAH versus controls. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01520493
Study type Interventional
Source Laval University
Contact
Status Completed
Phase N/A
Start date June 2011
Completion date March 2015

See also
  Status Clinical Trial Phase
Completed NCT04076241 - Effects of Adding Yoga Respiratory Training to Osteopathic Manipulative Treatment in Pulmonary Arterial Hypertension N/A
Completed NCT05521113 - Home-based Pulmonary Rehabilitation With Remote Monitoring in Pulmonary Arterial Hypertension
Recruiting NCT04972656 - Treatment With Ambrisentan in Patients With Borderline Pulmonary Arterial Hypertension N/A
Completed NCT04908397 - Carnitine Consumption and Augmentation in Pulmonary Arterial Hypertension Phase 1
Active, not recruiting NCT03288025 - Pulmonary Arterial Hypertension Improvement With Nutrition and Exercise (PHINE) N/A
Completed NCT01959815 - Novel Screening Strategies for Scleroderma PAH
Recruiting NCT04266197 - Vardenafil Inhaled for Pulmonary Arterial Hypertension PRN Phase 2B Study Phase 2
Active, not recruiting NCT06092424 - High Altitude (HA) Residents With Pulmonary Vascular Diseseases (PVD), Pulmonary Artery Pressure (PAP) Assessed at HA (2840m) vs Sea Level (LA) N/A
Enrolling by invitation NCT03683186 - A Study Evaluating the Long-Term Efficacy and Safety of Ralinepag in Subjects With PAH Via an Open-Label Extension Phase 3
Terminated NCT02060487 - Effects of Oral Sildenafil on Mortality in Adults With PAH Phase 4
Terminated NCT02253394 - The Combination Ambrisentan Plus Spironolactone in Pulmonary Arterial Hypertension Study Phase 4
Withdrawn NCT02958358 - FDG Uptake and Lung Blood Flow in PAH Before and After Treatment With Ambrisentan N/A
Terminated NCT01953965 - Look at Way the Heart Functions in People With Pulmonary Hypertension (PH) Who Have Near Normal Right Ventricle (RV) Function and People With Pulmonary Hypertension Who Have Impaired RV Function. Using Imaging Studies PET Scan and Cardiac MRI. Phase 2
Not yet recruiting NCT01649739 - Vardenafil as add-on Therapy for Patients With Pulmonary Hypertension Treated With Inhaled Iloprost Phase 4
Withdrawn NCT01723371 - Beta Blockers for Treatment of Pulmonary Arterial Hypertension in Children Phase 1/Phase 2
Unknown status NCT01712997 - Study of the Initial Combination of Bosentan With Iloprost in the Treatment of Pulmonary Hypertension Patients Phase 3
Completed NCT01548950 - Drug Therapy and Surgery in Congenital Heart Disease With Pulmonary Hypertension N/A
Completed NCT01165047 - Nitric Oxide, GeNO Nitrosyl Delivery System Phase 2
Completed NCT00942708 - Safety and Efficacy of Fluoxetine in Pulmonary Arterial Hypertension Phase 2
Completed NCT00963027 - Effect of Esomeprazole on the Pharmacokinetics of Oral Treprostinil Phase 1