View clinical trials related to Polyneuropathies.
Filter by:Rationale: Diabetic neuropathy is one of the most common complications of Diabetes Mellitus (DM). Pain is a common symptom of diabetic neuropathy, affecting 11-34% of patients suffering form DM. The burden of disease of painful diabetic polyneuropathy (PDP) is high for both the patient and society, due to significant pain levels, frequent co-morbidity, polypharmacy and significant health resource use. Spinal cord stimulation (SCS) has been used for over 30 years to treat neuropathic pain. Several small clinical studies have shown a beneficial effect of SCS on pain in PDP. Objective: The primary objective of this study is to investigate whether SCS leads to clinically relevant (≥50%) pain relief in patients with moderate-to-severe PDP in the lower limbs after 6 months of treatment. Secondary objectives to investigate 1) the effect of SCS on health related quality of life in PDP; 2) the effect of SCS on the quality of sleep in PDP; 3) the effect of SCS on mood in PDP; 4) the effect of SCS on blood glucose control in PDP; 5) the effect of SCS on large and small nerve fibre functions in PDP; 6) identifying predictive factors for success of SCS treatment of PDP; after 6 months 7) the effect of SCS on small fibre loss and regeneration in PDP; and 8) costs, cost-utility and cost-effectiveness after 12 months of treatment. Study design: the study is a multi centre randomized controlled trial. Study population: Patients suffering from moderate-to-severe PDP in the lower limbs due to diabetes mellitus type 1 or type 2 as diagnosed by clinical symptoms (glove and stocking distribution). Intervention: patients assigned to group 1 will receive spinal cord stimulation (SCS) and/or best (drug) treatment as possible, patients assigned to group 2 will receive best (drug) treatment as possible. Main study parameters/endpoints: The main study parameter will be the mean pain intensity and/or maximal pain intensity during daytime and/or during night time as measured on a weighted NRS and/or a PGIC for pain and sleep measured on a 7-point Likert scale, after 6 months of treatment. Nature and extent of the burden and risks associated with participation, benefit and group relatedness: SCS related risks include: lead migration (14%), lead breakage (7%), implanted pulse generator migration (1%), loss of therapeutic effect, lost or unpleasant paresthesias (12%), infection or wound breakdown (10%), Pain at IPG incision site (12%), IPG pocket fluid collection (5%). Treatment-as-usual related risks are related to the medication used and do not increase due to participation in this study.
This phase II trial studies the side effects and how well carmustine, etoposide, cytarabine and melphalan together with antithymocyte globulin before a stem cell transplant works in treating patients with autoimmune neurologic disease that did not respond to previous therapy. In autoimmune neurological diseases, the patient's own immune system 'attacks' the nervous system which might include the brain/spinal cord and/or the peripheral nerves. Giving high-dose chemotherapy, including carmustine, etoposide, cytarabine, melphalan, and antithymocyte globulin, before a stem cell transplant weakens the immune system and may help stop the immune system from 'attacking' a patient's nervous system. When the patient's own (autologous) stem cells are infused into the patient they help the bone marrow make red blood cells, white blood cells, and platelets so the blood counts can improve.
The purpose of this study is to determine whether Acetyl L-carnitine can prevent the development of nerve damage, known as neuropathy, in individuals taking anti-HIV drugs over a 48-week period. In addition the safety and tolerability of Acetyl L-carnitine will be assessed. This study compares the use of Acetyl L-carnitine or placebo (a dummy drug) in the prevention of nerve damage. The current standard of care is to use painkillers to manage the pain, with little or no effect. The possible beneficial effects of taking Acetyl L-carnitine is to prevent nerve damage as a result of anti-HIV medication. The main purposes of the trial are: - to look at the differences in between those on Acetyl L-carnitine versus those on placebo - to look at the effect on state of your nervous system in the two treatment groups by measuring nerve activity - to learn more about the safety and tolerance of Acetyl L-carnitine
This clinical trial is to determine an effective dosage and to study the safety of an investigational drug -lidorestat (IDD-676)- which is intended to stop or slow the progression of diabetic peripheral neuropathy.