View clinical trials related to Pneumonia, Viral.
Filter by:The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is complicated by pneumonia (15 to 20% of cases) requiring hospitalization with oxygen therapy. Almost 20 to 25% of hospitalized patients require intensive care and resuscitation; half die. The main cause of death is acute respiratory distress syndrome (ARDS). However, some deaths have been linked to pulmonary embolism (PE). Recognition of PE is important because there is specific treatment to limit its own mortality. The identification of biological parameters of hemostasis predictive of thromboembolic disease is crucial in these patients. To evaluate the frequency of PE in the patients having to be hospitalized is to practice of a systematic thoracic angiography scanner in the patients having no contra-indication for its realization, as well as during hospitalization in patients deteriorating without any other obvious cause. The thromboembolic events and disturbances of the coagulation system described in patients with SARS-CoV-2 pneumonitis suggest that this viral infection is associated with an increase in the activation of coagulation contributing to the occurrence of thrombosis and especially from PE.
Preliminary data support the effect of Nitric Oxide (NO) on improving the oxygenation in mechanically ventilated patients and spontaneously breathing patients with COVID-19. In vitro studies showed an antiviral effect of NO against SARS-coronavirus. The optimal therapeutic regimen of NO gas in spontaneously breathing hypoxemic patients with COVID-19 is not known. We hypothesize that high concentration inhaled NO with an adjunct of continuous low dose administration between the high concentration treatments can be safely administered in hypoxemic COVID-19 patients compared to the high dose treatment alone. Prolonged administration of NO gas may benefit the patients in terms of the severity of the clinical course and time to recovery. Together with a clinical effect on ventilation-perfusion matching, a prolonged regimen would allow also an increase in antiviral activity (dose and time-dependent).
During COVID-19 epidemic, hydroxychloroquine was proposed and authorized as a possible key agent in the treatment of COVID-19 hospitalized pneumonia, including in France. Gautret et al. proposed the combination regimen with azithromycin. However only one study reported the interest of azithromycin alone. Retrospective study reporting the impact of the anti-infective agents used during the pandemic in a tertiary care hospital, using azithromycin with or without hydroxychloroquine.
Pneumonia is a recurrent element of COVID-19 infection, it is often associated with development of respiratory failure and patients frequently need various degrees of oxygen therapy up to non invasive ventilation (NIV-CPAP) and invasive mechanical ventilation (IMV). Main purpose of this study is to evaluate with non invasive clinical instruments (pletysmography, Diffusion lung capacity for carbon monoxide -DLCO-, six minute walking test and dyspnea scores) and radiological tools (chest X-ray and chest CT scan) the development of medium-to-long term pulmonary sequelae caused by SARS-CoV-2 pneumonia.
coronavirus disease 2019 related pneumonia is causing acute respiratory failure and this is the most common reason for ICU admission. We have several different way for respiratory support. HFNC is one of the new technics for oxygen support. Our main purpose to observe the effect of HFNC on coronavirus disease 2019 patients' ICU stay and mortality.
Severe Acute Respiratory Syndrome (SARS) SARS-CoV-2, name of the Coronavirus Group of international Committee on taxonomy of viruses, is an emerging virus from the family of coronaviridae, responsible for the COVID-19 pandemic. This infection can progress to viral pneumonia, and in 3% of cases up to acute respiratory distress syndrome (ARDS) which conditions the prognosis of the disease. Due to its unusual clinical presentation with a risk of sudden deterioration on the 8th day as a result of possible hyperinflammatory response, the respiratory impairment of COVID is unique and many questions remain unanswered concerning its evolution once the acute phase has passed. Knowledge of the evolution of pulmonary involvement, particularly in patients requiring hospitalization, can help reduce the morbidity linked to the persistent abnormalities identified by establishing early therapeutic management. It can also provide a better understanding of the mechanisms of pulmonary involvement in the acute phase. Current data regarding the acute phase of COVID-19 suggest that persistent abnormalities remain distant from this infection at all levels of the respiratory system: gas exchange, perfusion, ventilatory mechanics, and interstitial lung disease. The main objective is to characterize persistent gas exchange anomalies 4 months after documented COVID-19 pneumonia, resulting in oxygen desaturation and requiring hospitalization.
The novel coronavirus SARS-CoV2 clinically presents with pneumonia, characterised by fever, cough, dyspnea. The severity of the disease varies widely with evidence of mild disease in the majority of confirmed cases, severe pneumonia-dyspnea, hypoxia or lung involvement at imaging within 24-48 hours- and critical disease with respiratory failure, shock or multi-organ failure in particular patient cohorts. Imaging plays a key role is diagnosis and progression of this disease.
Molecular testing (e.g PCR) of respiratory tract samples is the recommended method for the identification and laboratory confirmation of COVID-19 cases. Recent evidence reported that the diagnostic accuracy of many of the available RT-PCR tests for detecting SARS-CoV2 may be lower than optimal. Of course, the economical and clinical implications of diagnostic errors are of foremost significance and in case of infectious outbreaks, namely pandemics, the repercussions are amplified. False positives and false-negative results may jeopardize the health of a single patient and may affect the efficacy of containment of the outbreak and of public health policies. In particular, false-negative results contribute to the ongoing of the infection causing further spread of the virus within the community, masking also other potentially infected people.
Nasal High Flow oxygen therapy (NHF) is commonly used as first line ventilatory support in patients with acute hypoxemic respiratory failure (AHRF). It's use has been initially limited in Covid-19 patients presenting with AHRF. The aim of the study is to describe the use of NHF in Covid-19-related AHRF and report the changes in the respiratory-oxygenation index (termed ROX index) over time in these patients.
This study seeks to investigate the role of lung ultrasound in caring for Covid-19 positive patients and whether it can be used to predict patient deterioration. This information will be vital for healthcare workers who seek to identify Covid-19 pneumonia or patients at risk for deterioration early in the disease course.