View clinical trials related to Pick Disease of the Brain.
Filter by:The goal of this observational study is to determine whether the early adoption of blood-based biomarkers for Alzheimer's disease is associated with an impact on etiological diagnosis, patient's management, emotional impact, patient's preferences and cost-effectiveness in patients presenting with cognitive complaints in a Cognitive Disorders Unit from a public hospital. The main questions it aims to answer are: 1. Does the early adoption of blood-based biomarkers in clinical practice enable an earlier etiologic diagnosis with high confidence compared to the late adoption of blood-based biomarkers in the patients with cognitive complaints that are admitted in a Cognitive Disorders Unit? 2. Is the early adoption of blood-based biomarkers in clinical practice associated with changes in clinical management compared to their late adoption? 3. Is the early adoption of blood-based biomarkers in clinical practice associated with a lower emotional impact in the patients and their study partners/caregivers compared to their late adoption? 4. Are blood-based biomarkers better tolerated than other tests and preferred by patients for the diagnostic work-up? 5. Does blood-based biomarkers have an impact in the cost of the diagnostic workup and clinical management of the patients that are admitted in a Cognitive Disorders Unit? Participants will be asked to: - Perform a blood extraction for blood-based biomarkers analysis at the beginning of the study. - Complete specific scales in each visit. Researchers will compare the group in which blood biomarkers are delivered at 3 months with the group in which they are delivered at 9 months to assess whether early adoption of blood-based biomarkers is associated with an impact on etiological diagnosis, patient's management, emotional impact, patient's preferences and cost-effectiveness in a specialized memory unit.
The primary objective of this research is to evaluate the effects of non-invasive brain stimulation and computerized cognitive training on executive functioning in individuals with Primary Progressive Aphasia (PPA), mild cognitive impairment (MCI), or dementia. In this study, investigators will use transcranial direct current stimulation (tDCS) to stimulate the left dorsolateral prefrontal cortex (DLPFC). Previous studies have demonstrated that tDCS over the DLPFC led to improvements in attention deficit caused by stroke, Parkinson's Disease, and major depression as well as language deficits caused by neurodegenerative conditions such as primary progressive aphasia or mild cognitive impairment. The investigators seek to expand on this literature by investigating how anodal tDCS paired with and without cognitive training will impact executive functioning in PPA with Frontotemporal Dementia or Alzheimer's Disease pathology and Mild Cognitive Impairment/Alzheimer's Disease (e.g. shifting, updating, monitoring, and manipulation).
The purpose of the study is to test whether low level electric stimulation, called transcranial Direct Current Stimulation (tDCS), on the part of the brain (i.e., pre-supplementary motor area) thought to aid in memory will improve speech and language difficulties in patients with primary progressive aphasia (PPA) and progressive apraxia of speech (PAOS). The primary outcome measures are neuropsychological assessments of speech and language functions, and the secondary measures are neuropsychological assessments of other cognitive abilities and electroencephalography (EEG) measures.
ScreenPlus is a consented, multi-disorder pilot newborn screening program implemented in conjunction with the New York State Newborn Screening Program that provides families the option to have their newborn(s) screened for a panel of additional conditions. The study has three primary objectives: 1) define the analytic and clinical validity of multi-tiered screening assays for a flexible panel of disorders, 2) determine disease incidence in an ethnically diverse population, and 3) assess the impact of early diagnosis on health outcomes. Over a five-year period, ScreenPlus aims to screen 175,000 infants born in nine high birthrate, ethnically diverse pilot hospitals in New York for a flexible panel of 14 rare genetic disorders. This study will also involve an evaluation of the Ethical, Legal and Social issues pertaining to NBS for complex disorders, which will be done via online surveys that will be directed towards ScreenPlus parents who opt to participate and qualitative interviews with families of infants who are identified through ScreenPlus.
1. To investigate the biomarkers of MND/FTD spectrum disease 2. To explore the possible pathogenesis of MND/FTD
The investigators aim to learn more about symptoms suggestive of a neurodegenerative process.
The VOICE Of bvFTD study is a telephone interview research study about life with or at risk for behavioral variant frontotemporal dementia (bvFTD). The study aims to understand how bvFTD impacts individuals' day to day lives, how people think about themselves, and what challenges they face.
Early Check provides voluntary screening of newborns for a selected panel of conditions. The study has three main objectives: 1) develop and implement an approach to identify affected infants, 2) address the impact on infants and families who screen positive, and 3) evaluate the Early Check program. The Early Check screening will lead to earlier identification of newborns with rare health conditions in addition to providing important data on the implementation of this model program. Early diagnosis may result in health and development benefits for the newborns. Infants who have newborn screening in North Carolina will be eligible to participate, equating to over 120,000 eligible infants a year. Over 95% of participants are expected to screen negative. Newborns who screen positive and their parents are invited to additional research activities and services. Parents can enroll eligible newborns on the Early Check electronic Research Portal. Screening tests are conducted on residual blood from existing newborn screening dried blood spots. Confirmatory testing is provided free-of-charge for infants who screen positive, and carrier testing is provided to mothers of infants with fragile X. Affected newborns have a physical and developmental evaluation. Their parents have genetic counseling and are invited to participate in surveys and interviews. Ongoing evaluation of the program includes additional parent interviews.
The goals of this study are: (1) to better understand the relationship between the phenotype and genotype of amyotrophic lateral sclerosis (ALS) and related diseases, including primary lateral sclerosis (PLS), hereditary spastic paraplegia (HSP), progressive muscular atrophy (PMA), and frontotemporal dementia (FTD); and (2) to develop biomarkers that might be useful in aiding therapy development for this group of disorders.
The investigators laboratory has been studying families with a history of ALS for more than 30 years and is continuing to use new ways to understand how genes may play a role in ALS, motor neuron disease and other neuromuscular disorders. The purpose of this study is to identify additional genes that may cause or put a person at risk for either familial ALS (meaning 2 or more people in a family who have had ALS), sporadic ALS, or other forms of motor neuron disease in the hopes of improving diagnosis and treatment. As new genes are found that may be linked to ALS in families or individuals, the investigators can then further study how that gene may be contributing to the disease by studying it down to the protein and molecular level. This includes all forms of ALS, motor neuron disease and ALS with fronto-temporal dementia(ALS/FTD). We also continue to study other forms of neuromuscular disease such as Miyoshi myopathy, FSH dystrophy and other forms of muscular dystrophy by looking at the genes that may be associated with them. There have been a number of genes identified that are associated with both familial and sporadic ALS, with the SOD1, C9orf72, and FUS genes explaining the majority of the cases. However, for about 25% of families with FALS, the gene(s) are still unknown. The investigators also will continue to work with families already identified to carry one of the known genes associated with ALS.