View clinical trials related to Pick Disease of the Brain.
Filter by:Despite well-documented disparities in Alzheimer's disease and related dementia (AD) prevalence, incidence, treatment, and mortality, individuals from disadvantaged backgrounds (e.g. racial/ethnic minorities and socioeconomically disadvantaged persons) are under-represented in clinical research. Existing research recruitment approaches are rarely designed to accommodate the priorities, concerns, and constraints relevant to participants from diverse backgrounds. To address these gaps, the investigators developed a research recruitment and engagement model, the Participant Oriented Research Engagement Model that centers and prioritizes relational aspects of research engagement, research participant needs, and systematically address socioeconomic determinants (i.e. unmet needs) that may limit accessibility of research. The investigators propose to test the effectiveness of the Brain Health Community (BHC) Registry recruitment and engagement intervention, as compared to standard research recruitment strategies in modifying enrollment rates, participant satisfaction, and engagement. The investigators hypothesize that the BHC Registry will yield greater enrollment rates, higher satisfaction, and better ratings of relational engagement.
Aphasia is an acquired impairment of language, that commonly results from damage to language areas in the brain (typically the left side of the brain). This impairment is seen in many aspects of language, including understanding, speaking, reading and writing. It is estimated that about 2 million individuals are currently living with aphasia in the United States. Further, about 200,000 Americans acquire aphasia every year (National Aphasia Association, 2020). Aphasia poses significant impact on the affected individuals and their families. Behavioral treatments that target language deficits have been shown to enhance overall communication skills and life satisfaction among individuals with aphasia. Although there is evidence that suggests that treatment is efficacious for individuals with aphasia, the extent of improvement long-term coupled with the neural patterns among those individuals are largely unknown. The current study aims to investigate the efficacy of language-based treatment and its corresponding neural patterns.
Persistent developmental stuttering affects more than three million people in the United States, and it can have profound adverse effects on quality of life. Despite its prevalence and negative impact, stuttering has resisted explanation and effective treatment, due in large part to a poor understanding of the neural processing impairments underlying the disorder. The overall goal of this study is to improve understanding of the brain mechanisms involved in speech motor planning and how these are disrupted in neurogenic speech disorders, like stuttering. The investigators will do this through an integrated combination of experiments that involve speech production, functional MRI, and non-invasive brain stimulation. The study is designed to test hypotheses regarding the brain processes involved in learning and initiating new speech sound sequences and how those processes compare in persons with persistent developmental stuttering and those with typical speech development. These processes will be studied in both adults and children. Additionally, these processes will be investigated in patients with neurodegenerative speech disorders (primary progressive aphasia) to further inform the investigators understanding of the neural mechanisms that support speech motor sequence learning. Together these experiments will result in an improved account of the brain mechanisms underlying speech production in fluent speakers and individuals who stutter, thereby paving the way for the development of new therapies and technologies for addressing this disorder.
While many have strongly suggested that transcranial direct current stimulation (tDCS) may represent a beneficial intervention for patients with primary progressive aphasia (PPA), this promising technology has not yet been applied widely in clinical settings. This treatment gap is underscored by the absence of any neurally-focused standard-of-care treatments to mitigate the devastating impact of aphasia on patients' family, work, and social lives. Given that tDCS is inexpensive, easy to use (it is potentially amenable to home use by patients and caregivers), minimally invasive, and safe there is great promise to advance this intervention toward clinical use. The principal reason that tDCS has not found wide clinical application yet is that its efficacy has not been tested in large, multi-center, clinical trials. In this study, scientists in the three sites that have conducted tDCS clinical trials in North America-Johns Hopkins University and the University of Pennsylvania in the US, and the University of Toronto in Canada, will collaborate to conduct a multi-site, Phase II clinical trial of tDCS a population in dire need of better treatments.
This is a first in human study that will assess the safety and diagnostic performance of [18F]RP-115 (fluorine-18 labeled RP115), a positron emission tomography (PET) agent. This agent has the potential to identify the early changes that occur in the brains of patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD).
The purpose of the study is to test whether low level electric stimulation, called transcranial Direct Current Stimulation (tDCS), on the part of the brain (i.e., pre-supplementary motor area) thought to aid in memory will improve speech and language difficulties in patients with primary progressive aphasia (PPA) and progressive apraxia of speech (PAOS). The primary outcome measures are neuropsychological assessments of speech and language functions, and the secondary measures are neuropsychological assessments of other cognitive abilities and electroencephalography (EEG) measures.
ScreenPlus is a consented, multi-disorder pilot newborn screening program implemented in conjunction with the New York State Newborn Screening Program that provides families the option to have their newborn(s) screened for a panel of additional conditions. The study has three primary objectives: 1) define the analytic and clinical validity of multi-tiered screening assays for a flexible panel of disorders, 2) determine disease incidence in an ethnically diverse population, and 3) assess the impact of early diagnosis on health outcomes. Over a five-year period, ScreenPlus aims to screen 175,000 infants born in nine high birthrate, ethnically diverse pilot hospitals in New York for a flexible panel of 14 rare genetic disorders. This study will also involve an evaluation of the Ethical, Legal and Social issues pertaining to NBS for complex disorders, which will be done via online surveys that will be directed towards ScreenPlus parents who opt to participate and qualitative interviews with families of infants who are identified through ScreenPlus.
Much effort over the last several decades has been devoted to developing and implementing psychoeducational interventions for family caregiving partners for those with Alzheimer's and relatedm dementias (ADRD). However, few interventions address the specific needs of care partners for those with frontotemporal degeneration (FTD). This study tests an intervention to support family caregivers for those with FTD.
Double blinded, sham-controlled, randomized trial on repeated transcranial alternating current brain stimulation (tACS) in neurodegenerative diseases. The investigators will evaluate whether a 4-times daily repeated stimulation with gamma tACS on the posterior parietal cortex can improve symptoms in patients with neurodegenerative diseases, including dementia with Lewy Bodies, Alzheimer's disease, idiopathic normal pressure hydrocephalus and Frontotemporal dementia.
The primary purpose of this study is to evaluate the safety and the tolerability of 3 repeated doses of ET-STEM (Mesenchymal stem cells preconditioned with ethionamide) in patients with FTD.