View clinical trials related to Peripheral Artery Disease.
Filter by:The CLIMATE-II Observational Study examines to what extent chronically ill patients experience adverse health effects because of heat and whether the patients' specific health behavior, somatosensory amplification, risk and benefit perception, self-efficacy, health literacy, degree of urbanisation of the patients' administration district and characteristics of the patients' neighborhood are associated with these effects.
The ENLIGHTEN PAD Trial will collect preliminary data to test whether daily 660 nm light treatment of the lower extremities immediately before home-based walking exercise sessions improves six-minute walk distance at 4-month follow-up, compared to sham light, in people with lower extremity peripheral artery disease (PAD).
The purpose of this study is to test the effects of leg exercise assistive paddling (LEAP) therapy during prolonged sitting (PS) on vascular and functional performance in those with peripheral artery disease (PAD) and age-matched controls. LEAP therapy is a novel application of passive limb movement to enhance blood flow through the legs without muscular contractions. Specifically, LEAP therapy is the rotational passive movement of the lower leg about the knee from 90 to 180 degrees of rotation at a cadence of 1Hz. Previous literature has indicated that this movement pattern can produce robust increases in blood flow in the passively moved limb in healthy individuals, and passive limb movement may protect vascular function during PS. However, the impact of LEAP therapy to improve blood flow in the legs of those with PAD during PS is unknown. To be eligible for this study, those with PAD must be between the ages of 50-85 years, women must be postmenopausal, must have a history of exercise-limiting claudication, have an ankle brachial index (ABI) 0.9. Participants will participate in a randomized cross-over design study with 2 visits (LEAP therapy and no LEAP therapy). For the first visit, participants will be randomly allocated to receive LEAP therapy during 2.5 hours of PS or not. For the second visit, participants will sit for 2.5 hours and will receive the condition that they did not previously receive. Before and after PS, the following measurements will be made: flow-mediated dilation of the popliteal and brachial arteries, arterial stiffness with tonometry techniques, microvascular vasodilatory capacity and skeletal muscle metabolic rate with near-infrared spectroscopy, autonomic nervous system function, and there will be blood drawn from the antecubital vein. After PS, participants will participate in a graded exercise test to assess functional walking capacity. Finally, during PS, near-infrared spectroscopy on the calf muscles and electrocardiogram will be collected continuously to monitor muscle oxygen availability and autonomic activity, respectively. There will be no follow-up.
Peripheral artery disease, lack or blood flow to the legs, has a high prevalence in the Veteran population. In patients with severe peripheral artery disease that requires an endovascular or surgical intervention for lower leg revascularization, the long-term mortality of approximately 50% is worse that most cancers. The goal of this study is to develop a management strategy to improve cardiovascular outcomes in this high-risk peripheral artery disease population after lower extremity revascularization.
In this study, we are trying to see if vitamin B6 can minimize the amplified blood pressure response to exercise following ischemia-reperfusion injury. We are interested in a protein called P2X3, of which function can be blocked by vitamin B6, in the neurons of our nervous system. It is very important for blood pressure regulation. We would like to see if the P2X3 plays a role in patients' rising blood pressure during exercise. The results of the proposed studies will provide a base for those two potential economic and non-invasive inventions to improve the overall health and well-being of PAD patients.
Purpose: Peripheral artery disease (PAD) is associated with elevated oxidative stress, and oxidative stress has been implicated as the cause of reduced endothelial reactivity in individuals with PAD. Endothelial function is important because the endothelium contributes to the dilation of arteries during exercise, thereby implicating impaired endothelial function as a mechanism contributing to exacerbated exercise-induced ischemia. Therefore, the purpose of this study is to test the hypothesis that acute exogenous diroximel fumarate (Vumerity) intake will improve antioxidant capacity, thereby reducing oxidative stress and improving vascular function and walking capacity in those with PAD. Eligibility: Individuals with PAD will be deemed eligible for this study if they 1) are 50-75 years old and postmenopausal, 2) have a positive history of exercise-limiting claudication (Fontaine II or III), 3) do not have renal impairments, 4) do not have Fontaine stage IV PAD, and 5) are not currently pregnant or nursing. Age-matched controls will be deemed eligible for this study if they 1) are 50-75 years old and postmenopausal, 2) have an ABI greater than 0.9 (no PAD), 3) do not have exercise-limiting diseases or injuries, 4) do not have renal impairments, and 5) are not currently pregnant or nursing. Intervention and Evaluation: During this study, participants will be administered diroximel fumarate or a placebo, and the acute effects of diroximel fumarate on vascular function and walking capacity will be assessed. Vascular function and walking capacity will be assessed with flow-mediated dilation, arterial stiffness, head-up tilt test, blood biomarkers, near-infrared spectroscopy, and a treadmill test. Follow-up: There will be a follow-up visit to assess blood work after diroximel fumarate.
Peripheral artery disease (PAD), vascular disease of atheromatous origin, is a frequent pathology, with a steady and significant increase in prevalence over the last decades. It has various symptoms ranging from mild arterial claudication to critical limb ischemia. The critical ischaemia stage in PAD is defined by rest pain or trophic disorders and is a special situation because of the number of cardiovascular deaths at 1 year (25%), 60% at 5 years and acute ischaemic recurrence at 1 year (25%). It is a medico-surgical pathology. A haemodynamic marker is needed to monitor patients, as it is predictive of limb progression, cardiovascular events and mortality. The Systolic Rise Time (SRT) of the plantar footpad is a recently described haemodynamic measurement of proven value in the diagnosis of PAD. The aim of this study is to show the prognostic value of the Systolic Rise Time on Major Adverse Limb Events (MALE).
This single-center, 400-patient, randomized controlled trial assesses the impact of a patient- and provider-facing EPIC Best Practice Advisory (BPA; alert-based computerized decision support tool) to increase guideline-directed utilization of statin and statin-alternative oral LDL-C lowering therapies in patients with PAD who are not being prescribed LDL-C-lowering therapy.
The femoropopliteal artery segment (FPAS) is one of the longest arteries in the human body, undergoing torsion, compression, flexion and extension due to lower limb movements. Endovascular surgery is considered to be the treatment of choice for the peripheral arterial disease, the results of which depend on the physiological forces on the arterial wall, the anatomy of the vessels and the characteristics of the lesions being treated. The atheromatous disease includes, in a simple way, 3 categories of plaques: calcified, fibrous, and lipidic. The study of these plaques and their differentiation in imaging and histology in the FPAS has already been the subject of research. To treat them, there are angioplasty balloons and stents with different designs and components, with different mechanical properties and different impregnated molecules. There is no non-invasive method (imaging) to accurately differentiate lesions along the FPAS. The analysis is performed from the preoperative CT scan, but there are high-resolution scanners that allow a quasi-histological analysis of the tissue. This microscanner can be used ex vivo. In the framework of a project, the learning algorithm was be créated (Convolutional Neural Networks) to automatically segment microscanner slices: after taking FPAS from amputated limbs, we correlated ex-vivo microscanner images of the arteries with their histology. The correlation was then performed manually between the microscanner images, and the histological sections obtained. the algorithm well be trained on these slices and validated its performance. The validation of the CT and microscanner concordance was the subject of scientific publications.
Patients with atherosclerotic peripheral artery disease often have combined coronary artery disease or cerebral artery disease and show high rates of cardiovascular mortality and morbidities. Therefore, secondary prevention for these patients is of great clinical importance. Currently, Korean, US, and European guidelines recommend different LDL cholesterol target goals in patients with peripheral artery disease. In recent clinical trials, combination therapy of statin plus ezetimibe demonstrated improved cardiovascular outcomes compared with statin monotherapy. Thus, the purpose of the CARE-PVD study is to investigate whether the combination therapy of high intensity rosuvastatin 20 mg plus ezetimibe 10 mg can improve cardiovascular outcomes in patient with peripheral artery disease or polyvascular artery disease in comparison with rosuvastatin treat-to-target (LDL cholesterol <70 mg/dL) monotherapy.