Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to gain a better understanding of how exercise training affects motor/hand function and brain function in those diagnosed with Parkinson's disease. The investigators want to study if exercise will improve hand function and improve the level of brain activity.


Clinical Trial Description

Current medical and surgical approaches to Parkinson's disease (PD) are expensive and associated with a variety of side effects that may compromise the patient's quality of life. Development of a non-drug, non-surgical therapeutic approach to improve motor function would provide an attractive adjunct to current PD treatment approaches. Promising results from animal exercise studies have not been translated to patients with PD.

Animal studies suggest forced-exercise produces an endogenous increase in neurotrophic factors. An increase in these factors is believed to improve the capacity of dopamine neurons to deliver dopamine and selectively increase dopamine levels within the dorsolateral striatum. Models of PD provide a theoretical framework for forced-exercise and explain why voluntary exercise is not associated with global improvements in motor function for PD patients. Based on model predictions, decreased motor cortical activation limits PD patients' ability to perform voluntary exercise at the relatively high rate used in animal studies that demonstrate a therapeutic benefit. Therefore, PD patients may not be able to exercise (voluntarily) at sufficiently high rates to trigger the endogenous release of neurotrophic factors thought to underlie global improvements in motor functioning. A safe lower extremity forced-exercise paradigm that augments PD patients voluntary exercise rates has been developed for humans in an ongoing R21 project. Similar to our initial study, PD patients completing an 8-week forced-exercise intervention exhibited nearly a 25% percent improvement in clinical motor ratings, patients completing a voluntary exercise intervention showed no improvement in clinical ratings. Our recent fMRI data indicate that an acute bout of forced-exercise in PD patients produces a similar subcortical and cortical activation pattern as is seen following administration of levodopa. Global improvements in motor function and increased neural activity suggest forced-exercise may be altering brain function in PD patients. The goal of this project is to determine and compare the effects of forced versus voluntary exercise on PD motor and non-motor function and associated changes in the pattern of neural activity.

A single-center, parallel-group, rater-blind, study in a 2:2:1 randomization is proposed. A total of 100 mild to moderate idiopathic PD patients will be randomized to a voluntary, forced or no-exercise control group. Exercise groups will exercise at identical aerobic intensities, however those in the forced group will be provided mechanical assistance to perform exercise 35% faster than their voluntary exercise rate. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01636297
Study type Interventional
Source The Cleveland Clinic
Contact
Status Completed
Phase N/A
Start date June 2013
Completion date December 2017

See also
  Status Clinical Trial Phase
Completed NCT02915848 - Long-term Stability of LFP Recorded From the STN and the Effects of DBS
Recruiting NCT03648905 - Clinical Laboratory Evaluation of Chronic Autonomic Failure
Terminated NCT02688465 - Effect of an Apomorphine Pump on the Quality of Sleep in Parkinson's Disease Patients (POMPRENELLE). Phase 4
Completed NCT05040048 - Taxonomy of Neurodegenerative Diseases : Observational Study in Alzheimer's Disease and Parkinson's Disease
Active, not recruiting NCT04006210 - Efficacy, Safety and Tolerability Study of ND0612 vs. Oral Immediate Release Levodopa/Carbidopa (IR-LD/CD) in Subjects With Parkinson's Disease Experiencing Motor Fluctuations Phase 3
Completed NCT02562768 - A Study of LY3154207 in Healthy Participants and Participants With Parkinson's Disease Phase 1
Completed NCT00105521 - Sarizotan in Participants With Parkinson's Disease Suffering From Treatment Associated Dyskinesia Phase 3
Completed NCT00105508 - Sarizotan HC1 in Patients With Parkinson's Disease Suffering From Treatment-associated Dyskinesia Phase 3
Recruiting NCT06002581 - Repetitive Transcranial Magnetic Stimulation(rTMS) Regulating Slow-wave to Delay the Progression of Parkinson's Disease N/A
Completed NCT02236260 - Evaluation of the Benefit Provided by Acupuncture During a Surgery of Deep Brain Stimulation N/A
Completed NCT00529724 - Body Weight Gain, Parkinson, Subthalamic Stimulation Phase 2
Active, not recruiting NCT05699460 - Pre-Gene Therapy Study in Parkinson's Disease and Multiple System Atrophy
Completed NCT03703570 - A Study of KW-6356 in Patients With Parkinson's Disease on Treatment With Levodopa-containing Preparations Phase 2
Completed NCT03462680 - GPR109A and Parkinson's Disease: Role of Niacin in Outcome Measures N/A
Completed NCT02837172 - Diagnosis of PD and PD Progression Using DWI
Not yet recruiting NCT04046276 - Intensity of Aerobic Training and Neuroprotection in Parkinson's Disease N/A
Recruiting NCT02952391 - Assessing Cholinergic Innervation in Parkinson's Disease Using the PET Imaging Marker [18F]Fluoroethoxybenzovesamicol N/A
Active, not recruiting NCT02937324 - The CloudUPDRS Smartphone Software in Parkinson's Study. N/A
Completed NCT02874274 - Vaccination Uptake (VAX) in PD N/A
Terminated NCT02894567 - Evaluation of Directional Recording and Stimulation Using spiderSTN N/A