Parkinson's Disease Clinical Trial
Official title:
Double-blind, Randomized, Placebo- and Positive-controlled, Parallel-group Trial to Assess the Potential Electrocardiographic Effects of Rotigotine Transdermal System up to 120 cm2/54.0 mg/Day in Subjects With Advanced-stage Idiopathic Parkinson's Disease: A Thorough QT/QTc Trial.
The purpose of this trial is to assess whether rotigotine has an effect on the electrical activity of the heart. Moxifloxacin infusion is used as positive control to assess assay sensitivity.
Status | Completed |
Enrollment | 130 |
Est. completion date | October 2006 |
Est. primary completion date | September 2006 |
Accepts healthy volunteers | No |
Gender | Both |
Age group | 18 Years and older |
Eligibility |
Inclusion Criteria: - Male or female at least 18 years of age - Advanced-stage idiopathic Parkinson's disease requiring treatment with levodopa. - Nonchildbearing potential Exclusion Criteria: - Atypical Parkinson's syndrome(s). - History of pallidotomy, thalamotomy, deep brain stimulation, or fetal tissue transplant. - Significant tremor or dyskinesias. - Severe dysfunction of the autonomic nervous system. - History of transient ischemic attack or stroke within the last 12 months. - Conduction abnormality or relevant cardiac dysfunction and/or myocardial infarction within last 12 months. - History or current condition of additional risk factors for Torsade de Pointes (eg, heart failure, hypokalemia), or a family history of long QT syndrome and/or of Torsade de Pointes. - No stable sinus rhythm: more than 20 ectopics/h. - Any other clinically relevant ECG abnormality. - History or current condition of epilepsy and/or seizures. - History or current condition of atopic or eczematous dermatitis, psoriasis, or another active skin disease. - History or current condition of symptomatic orthostatic hypotension. - History or current condition of significant skin hypersensitivity to adhesives or other transdermal products or recent unresolved contact dermatitis. - History of glucose 6-phosphate dehydrogenase deficiency. - History of tendonitis or tendon rupture with quinolone antibiotics. - Renal or hepatic dysfunction. - Treatment with dopamine agonists, MAO A inhibitors, reserpine, or alpha-methyldopa - Therapy known to produce a nontrivial prolongation of the QT interval. |
Allocation: Randomized, Endpoint Classification: Safety Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Investigator, Outcomes Assessor), Primary Purpose: Treatment
Country | Name | City | State |
---|---|---|---|
South Africa | Farmovs-Parexel (Pty) Ltd | Bloemfontein | |
South Africa | Qdot, a division of Parexel International DA (Pty) Ltd. | George |
Lead Sponsor | Collaborator |
---|---|
UCB Pharma |
South Africa,
Elshoff JP, Braun M, Andreas JO, Middle M, Cawello W. Steady-state plasma concentration profile of transdermal rotigotine: an integrated analysis of three, open-label, randomized, phase I multiple dose studies. Clin Ther. 2012 Apr;34(4):966-78. doi: 10.10 — View Citation
Malik M, Andreas JO, Hnatkova K, Hoeckendorff J, Cawello W, Middle M, Horstmann R, Braun M. Thorough QT/QTc study in patients with advanced Parkinson's disease: cardiac safety of rotigotine. Clin Pharmacol Ther. 2008 Nov;84(5):595-603. doi: 10.1038/clpt.2 — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI at Time of Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 20:00h. | Baseline (Day -2/ Day -1) 20:00h, Day 42 20:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 1 Hour After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 21:00h. | Baseline (Day -2/ Day -1) 21:00h, Day 42 21:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 2 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 22:00h. | Baseline (Day -2/ Day -1) 22:00h, Day 42 22:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 3 Hours After Patch Application on Day 42(Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 23:00h. | Baseline (Day -2/ Day -1) 23:00h, Day 42 23:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 4 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 00:00h. | Baseline (Day -2/ Day -1) 00:00h, Day 43 00:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 5 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 1:00h. | Baseline (Day -2/ Day -1) 1:00h, Day 43 1:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 6 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 2:00h. | Baseline (Day -2/ Day -1) 2:00h, Day 43 2:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 7 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 3:00h. | Baseline (Day -2/ Day -1) 3:00h, Day 43 3:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 8 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 4:00h. | Baseline (Day -2/ Day -1) 4:00h, Day 43 4:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 9 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 5:00h. | Baseline (Day -2/ Day -1) 5:00h, Day 43 5:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 10 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 6:00h. | Baseline (Day -2/ Day -1) 6:00h, Day 43 6:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 11 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 7:00h. | Baseline (Day -2/ Day -1) 7:00h, Day 43 7:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 12 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 8:00h. | Baseline (Day -2/ Day -1) 8:00h, Day 43 8:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 13 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 9:00h. | Baseline (Day -2/ Day -1) 9:00h, Day 43 9:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 14 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 10:00h. | Baseline (Day -2/ Day -1) 10:00h, Day 43 10:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 15 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 11:00h. | Baseline (Day -2/ Day -1) 11:00h, Day 43 11:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 16 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 12:00h. | Baseline (Day -2/ Day -1) 12:00h, Day 43 12:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 17 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 13:00h. | Baseline (Day -2/ Day -1) 13:00h, Day 43 13:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 18 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 14:00h. | Baseline (Day -2/ Day -1) 14:00h, Day 43 14:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 19 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 15:00h. | Baseline (Day -2/ Day -1) 15:00h, Day 43 15:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 20 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 16:00h. | Baseline (Day -2/ Day -1) 16:00h, Day 43 16:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 21 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 17:00h. | Baseline (Day -2/ Day -1) 17:00h, Day 43 17:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 22 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 18:00h. | Baseline (Day -2/ Day -1) 18:00h, Day 43 18:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 23 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 19:00h. | Baseline (Day -2/ Day -1) 19:00h, Day 43 19:00h | No |
Primary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTc Based on the QTcI 24 Hours After Patch Application on Day 42 (Rotigotine Dose of 54 mg/Day) (Parallel-group Comparison) | Change in QTcI was analyzed by a parallel-group comparison between rotigotine patch and placebo patch. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). The baseline QTcI value was obtained from the average of the ECG assessment on Day -2 and Day -1. Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 20:00h. | Baseline (Day -2/ Day -1) 20:00h, Day 43 20:00h | No |
Secondary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTcI 2 Hours Before Start of Infusion on Day 32 or Day 39 (Positive Control) and Respective Day 39 or Day 32 (Corresponding Placebo) (Cross-over Comparison) | Change in QTcI was analyzed by a cross-over comparison between moxifloxacin infusion and placebo infusion. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 8:00h. | Baseline (Day -2/ Day -1) 8:00h, Day 32/ Day 39 8:00h | No |
Secondary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTcI 1 Hour Before Start of Infusion on Day 32 or Day 39 (Positive Control) and Respective Day 39 or Day 32 (Corresponding Placebo) (Cross-over Comparison) | Change in QTcI was analyzed by a cross-over comparison between moxifloxacin infusion and placebo infusion. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 9:00h. | Baseline (Day -2/ Day -1) 9:00h, Day 32/ Day 39 9:00h | No |
Secondary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTcI at Start of Infusion on Day 32 or Day 39 (Positive Control) and Respective Day 39 or Day 32 (Corresponding Placebo) (Cross-over Comparison) | Change in QTcI was analyzed by a cross-over comparison between moxifloxacin infusion and placebo infusion. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 10:00h. | Baseline (Day -2/ Day -1) 10:00h, Day 32/ Day 39 10:00h | No |
Secondary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTcI 1 Hour After Start of Infusion on Day 32 or Day 39 (Positive Control) and Respective Day 39 or Day 32 (Corresponding Placebo) (Cross-over Comparison) | Change in QTcI was analyzed by a cross-over comparison between moxifloxacin infusion and placebo infusion. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 11:00h. | Baseline (Day -2/ Day -1) 11:00h, Day 32/ Day 39 11:00h | No |
Secondary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTcI 2 Hours After Start of Infusion on Day 32 or Day 39 (Positive Control) and Respective Day 39 or Day 32 (Corresponding Placebo) (Cross-over Comparison) | Change in QTcI was analyzed by a cross-over comparison between moxifloxacin infusion and placebo infusion. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 12:00h. | Baseline (Day -2/ Day -1) 12:00h, Day 32/ Day 39 12:00h | No |
Secondary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTcI 3 Hours After Start of Infusion on Day 32 or Day 39 (Positive Control) and Respective Day 39 or Day 32 (Corresponding Placebo) (Cross-over Comparison) | Change in QTcI was analyzed by a cross-over comparison between moxifloxacin infusion and placebo infusion. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 13:00h. | Baseline (Day -2/ Day -1) 13:00h, Day 32/ Day 39 13:00h | No |
Secondary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTcI 4 Hours After Start of Infusion on Day 32 or Day 39 (Positive Control) and Respective Day 39 or Day 32 (Corresponding Placebo) (Cross-over Comparison) | Change in QTcI was analyzed by a cross-over comparison between moxifloxacin infusion and placebo infusion. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 14:00h. | Baseline (Day -2/ Day -1) 14:00h, Day 32/ Day 39 14:00h | No |
Secondary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTcI 5 Hours After Start of Infusion on Day 32 or Day 39 (Positive Control) and Respective Day 39 or Day 32 (Corresponding Placebo) (Cross-over Comparison) | Change in QTcI was analyzed by a cross-over comparison between moxifloxacin infusion and placebo infusion. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 15:00h. | Baseline (Day -2/ Day -1) 15:00h, Day 32/ Day 39 15:00h | No |
Secondary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTcI 6 Hours After Start of Infusion on Day 32 or Day 39 (Positive Control) and Respective Day 39 or Day 32 (Corresponding Placebo) (Cross-over Comparison) | Change in QTcI was analyzed by a cross-over comparison between moxifloxacin infusion and placebo infusion. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 16:00h. | Baseline (Day -2/ Day -1) 16:00h, Day 32/ Day 39 16:00h | No |
Secondary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTcI 7 Hours After Start of Infusion on Day 32 or Day 39 (Positive Control) and Respective Day 39 or Day 32 (Corresponding Placebo) (Cross-over Comparison) | Change in QTcI was analyzed by a cross-over comparison between moxifloxacin infusion and placebo infusion. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 17:00h. | Baseline (Day -2/ Day -1) 17:00h, Day 32/ Day 39 17:00h | No |
Secondary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTcI 8 Hours After Start of Infusion on Day 32 or Day 39 (Positive Control) and Respective Day 39 or Day 32 (Corresponding Placebo) (Cross-over Comparison) | Change in QTcI was analyzed by a cross-over comparison between moxifloxacin infusion and placebo infusion. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 18:00h. | Baseline (Day -2/ Day -1) 18:00h, Day 32/ Day 39 18:00h | No |
Secondary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTcI 9 Hours After Start of Infusion on Day 32 or Day 39 (Positive Control) and Respective Day 39 or Day 32 (Corresponding Placebo) (Cross-over Comparison) | Change in QTcI was analyzed by a cross-over comparison between moxifloxacin infusion and placebo infusion. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 19:00h. | Baseline (Day -2/ Day -1) 19:00h, Day 32/ Day 39 19:00h | No |
Secondary | Time-matched Change From Baseline (Average of Day -2 and Day -1) in QTcI 10 Hours After Start of Infusion on Day 32 or Day 39 (Positive Control) and Respective Day 39 or Day 32 (Corresponding Placebo) (Cross-over Comparison) | Change in QTcI was analyzed by a cross-over comparison between moxifloxacin infusion and placebo infusion. The QT interval refers to the respective time interval in the Electrocardiogram (ECG). The QT interval was corrected for heart rate using an individualized heart rate correction formula including QT/RR curvature optimization (QTcI). Absolute values are presented as unadjusted Mean and Standard Deviation. Baseline and final measures were taken at 20:00h. | Baseline (Day -2/ Day -1) 20:00h, Day 32/ Day 39 20:00h | No |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT02915848 -
Long-term Stability of LFP Recorded From the STN and the Effects of DBS
|
||
Recruiting |
NCT03648905 -
Clinical Laboratory Evaluation of Chronic Autonomic Failure
|
||
Terminated |
NCT02688465 -
Effect of an Apomorphine Pump on the Quality of Sleep in Parkinson's Disease Patients (POMPRENELLE).
|
Phase 4 | |
Completed |
NCT05040048 -
Taxonomy of Neurodegenerative Diseases : Observational Study in Alzheimer's Disease and Parkinson's Disease
|
||
Active, not recruiting |
NCT04006210 -
Efficacy, Safety and Tolerability Study of ND0612 vs. Oral Immediate Release Levodopa/Carbidopa (IR-LD/CD) in Subjects With Parkinson's Disease Experiencing Motor Fluctuations
|
Phase 3 | |
Completed |
NCT02562768 -
A Study of LY3154207 in Healthy Participants and Participants With Parkinson's Disease
|
Phase 1 | |
Completed |
NCT00105521 -
Sarizotan in Participants With Parkinson's Disease Suffering From Treatment Associated Dyskinesia
|
Phase 3 | |
Completed |
NCT00105508 -
Sarizotan HC1 in Patients With Parkinson's Disease Suffering From Treatment-associated Dyskinesia
|
Phase 3 | |
Recruiting |
NCT06002581 -
Repetitive Transcranial Magnetic Stimulation(rTMS) Regulating Slow-wave to Delay the Progression of Parkinson's Disease
|
N/A | |
Completed |
NCT02236260 -
Evaluation of the Benefit Provided by Acupuncture During a Surgery of Deep Brain Stimulation
|
N/A | |
Completed |
NCT00529724 -
Body Weight Gain, Parkinson, Subthalamic Stimulation
|
Phase 2 | |
Active, not recruiting |
NCT05699460 -
Pre-Gene Therapy Study in Parkinson's Disease and Multiple System Atrophy
|
||
Completed |
NCT03703570 -
A Study of KW-6356 in Patients With Parkinson's Disease on Treatment With Levodopa-containing Preparations
|
Phase 2 | |
Completed |
NCT03462680 -
GPR109A and Parkinson's Disease: Role of Niacin in Outcome Measures
|
N/A | |
Completed |
NCT02837172 -
Diagnosis of PD and PD Progression Using DWI
|
||
Not yet recruiting |
NCT04046276 -
Intensity of Aerobic Training and Neuroprotection in Parkinson's Disease
|
N/A | |
Recruiting |
NCT02952391 -
Assessing Cholinergic Innervation in Parkinson's Disease Using the PET Imaging Marker [18F]Fluoroethoxybenzovesamicol
|
N/A | |
Active, not recruiting |
NCT02937324 -
The CloudUPDRS Smartphone Software in Parkinson's Study.
|
N/A | |
Completed |
NCT02874274 -
Vaccination Uptake (VAX) in PD
|
N/A | |
Terminated |
NCT02894567 -
Evaluation of Directional Recording and Stimulation Using spiderSTN
|
N/A |