Clinical Trials Logo

Clinical Trial Summary

Breathing is a complex process, which can be controlled through voluntary command or neural control. Parkinson's disease (PD) is a progressive neurological disorder. Many individuals with PD experience respiratory problems, such as coughing difficulties or shortness of breath. Changes in neural control of breathing could be part of the reason of these respiratory problems. This study will measure whether neural control of breathing is impaired in individuals with PD compared to healthy individuals.


Clinical Trial Description

Rationale: Parkinson's disease (PD) is a progressive neurological disorder, characterised by loss of dopaminergic neurons. Respiratory dysfunction is common in patients with PD and can lead to pneumonia, which is a common cause of death in PD. However, the exact mechanism of respiratory dysfunction in PD is unknown. The complex process of neural control of breathing may be involved, but this is understudied. This is partly caused by methodological limitations to quantify neural control of breathing. In this study, we will use respiratory neurophysiological methods to determine whether neural control of breathing is impaired in Parkinson's disease. These techniques are hypercapnic ventilatory response, respiratory related evoked potentials and transcranial magnetic stimulation. This study will test the hypothesis that the neural control of breathing is impaired in individuals with PD compared to healthy subjects. Objective: Primary Objective: To identify disease (Parkinson's disease) specific alterations in neural control of breathing by using respiratory neurophysiological techniques. Study design: Exploratory cross-sectional study. Study population: Healthy subjects (n=15) and patients with Parkinson's disease (n=15) >18 years old. Main study parameters/endpoints: - Hypercapnic ventilatory response curve (HCVR): HCVR will be determined using the CO2-rebreathing technique. - Respiratory related evoked potential (RREP): RREP is a measure of cerebral cortical activity elicited by a short inspiratory occlusion. - Transcranial magnetic stimulation (TMS) diaphragm: TMS is an established tool for investigating the cortical excitability related to breathing. Nature and extent of the burden and risks associated with participation, benefit and group relatedness: The risk of this study for the participants is negligible. Subjects do not directly benefit from participating in this study. The scientific benefit of this study is to achieve a better understanding of the neural control of breathing in Parkinson's disease. The outcomes of this study may give rise to future new treatments in Parkinson's disease. The burden of the separate study procedures is relatively small: there are no invasive procedures and patients continue their medication as usual. However, the total time of the visit and the collective burden of the experiments may be perceived as strenuous. Therefore, subjects will be explicitly informed about this aspect of the study, and enough breaks will be scheduled in the program. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06074614
Study type Observational
Source Radboud University Medical Center
Contact Jonne Doorduin, PhD
Phone +31243611111
Email jonne.doorduin@radboudumc.nl
Status Recruiting
Phase
Start date October 30, 2023
Completion date January 2025

See also
  Status Clinical Trial Phase
Completed NCT05415774 - Combined Deep Brain Stimulation in Parkinson's Disease N/A
Recruiting NCT04691661 - Safety, Tolerability, Pharmacokinetics and Efficacy Study of Radotinib in Parkinson's Disease Phase 2
Active, not recruiting NCT05754086 - A Multidimensional Study on Articulation Deficits in Parkinsons Disease
Completed NCT04045925 - Feasibility Study of the Taïso Practice in Parkinson's Disease N/A
Recruiting NCT04194762 - PARK-FIT. Treadmill vs Cycling in Parkinson´s Disease. Definition of the Most Effective Model in Gait Reeducation N/A
Completed NCT02705755 - TD-9855 Phase 2 in Neurogenic Orthostatic Hypotension (nOH) Phase 2
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Recruiting NCT05830253 - Free-living Monitoring of Parkinson's Disease Using Smart Objects
Recruiting NCT03272230 - Assessment of Apathy in a Real-life Situation, With a Video and Sensors-based System N/A
Recruiting NCT06139965 - Validity and Reliability of the Turkish Version of the Comprehensive Coordination Scale in Parkinson's Patients
Completed NCT04580849 - Telerehabilitation Using a Dance Intervention in People With Parkinson's Disease N/A
Completed NCT03980418 - Evaluation of a Semiconductor Camera for the DaTSCAN™ Exam N/A
Completed NCT04477161 - Effect of Ketone Esters in Parkinson's Disease N/A
Completed NCT04942392 - Digital Dance for People With Parkinson's Disease During the COVID-19 Pandemic N/A
Terminated NCT03446833 - LFP Beta aDBS Feasibility Study N/A
Completed NCT03497884 - Individualized Precise Localization of rTMS on Primary Motor Area N/A
Completed NCT05538455 - Investigating ProCare4Life Impact on Quality of Life of Elderly Subjects With Neurodegenerative Diseases N/A
Recruiting NCT04997642 - Parkinson's Disease and Movement Disorders Clinical Database
Completed NCT04117737 - A Pilot Study of Virtual Reality and Antigravity Treadmill for Gait Improvement in Parkinson N/A
Recruiting NCT03618901 - Rock Steady Boxing vs. Sensory Attention Focused Exercise N/A