Clinical Trials Logo

Clinical Trial Summary

Background: Stroke is a common cause of morbidity, including paresis, and stroke survivors often have reduced function in their paretic arm. Many do not regain full recovery of their arm function, which negatively impacts their quality of life. Recent studies have indicated that robotic training may improve upper limb function abilities among stroke survivors, by enabling repetitive, adaptive, and intensive training and more accurate control of task complexity. Robotic training in addition to standard rehabilitative care has shown promise for improving functional skills among stroke survivors. One type of robotic training is error enhancement, whereby an error made by the patient is exaggerated, increasing the signal to noise ratio which causes errors to be more noticeable. This, in turn, enhances movement correction. Previous studies have found that error enhancement has promise as a clinical treatment for patients with motor deficits. Objectives: This study aims to evaluate the effect of a robotic device (DeXtreme) on the functional capabilities of the paretic arm of stroke survivors. This device aims to improve arm function by utilizing error enhancement techniques. Methods: A double-blind randomized placebo-controlled study comparing treatment outcomes between two groups to assess the effect of error enhancement robotic training on functional use of the arm and hand in patients after stroke. Forty stroke patients will undergo 6 sessions of 25 minutes each with the Dextreme device. One group will receive training with error enhancement forces applied, while the control group will receive similar training without error enhancement. Outcomes (motor function, speed, tone, and spasticity) will be assessed twice prior to and following the treatment sessions,


Clinical Trial Description

Background: At least 85% of stroke survivors suffer from weakness in their upper limbs. Around 40% of stroke survivors will suffer from severe handicap in their paretic arm, negatively affecting their independence and quality of life. Only 30% - 70% of survivors will recover enough function to enable daily use of the arm. These numbers clearly indicate that despite significant advances in the ability to rehabilitate stroke patients, there is still a need for more effective methods. Traditional rehabilitative methods to improve arm function after stroke are often time-consuming and labor-intensive. Only few of these methods induce slightly improved arm function, and full recovery of arm function is often not achieved. Recently, studies have indicated that robotic training has promise for improving functional abilities among stroke survivors, by enabling repetitive, adaptive, and intensive training and more accurate control of task complexity. One type of robotic training that is particularly promising is error enhancement, which utilizes the adaptive capabilities of the nervous system to improve motor function. Study Objectives: To examine the change in the upper limb function among stroke patients undergoing error enhancement treatment compared to a control group in the following domains: 1. Motor Function (Motor Assessment Scale-MAS, Fugl-Meyer Assessment) 2. Speed (Box and Blocks Assessment) 3. Tone and Spasticity (Modified Ashworth Scale) Methods Participants: 40 stroke patients with hemiparesis recruited 21-60 days following the Cerebrovascular accident event. Recruitment: Electronic medical records of newly hospitalized patients will be screened to identify potential study participants. Participation will be offered to each patient who meets the study inclusion criteria. After obtaining informed consent, an intake session will take place for both participant screening and evaluation, conducted by a qualified occupational therapist. Patients who successfully pass the intake screening session will undergo randomization to one of the two study arms. Another occupational therapist will be conducting the treatment sessions. Patients in the intervention arm will undergo training sessions on the Dextreme robot device, while the error enhancement mechanism is switched on, while the patients in the control arm will undergo similar sessions with the mechanism switched off. A second patient assessment will be conducted within 96 hours following the last treatment session by an allocation-blinded occupational therapist. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05174676
Study type Interventional
Source Reuth Rehabilitation Hospital
Contact Rami Mansour, MD
Phone +972732701610
Email rami.mansour@reuth.org.il
Status Recruiting
Phase N/A
Start date December 20, 2021
Completion date December 2022

See also
  Status Clinical Trial Phase
Completed NCT01116544 - Treatment of Chronic Stroke With AMES + EMG Biofeedback N/A
Recruiting NCT06010823 - Safety and Efficacy Evaluation of the Robotic Enhanced Error Training of Upper Limb Function in Post-stroke and Post TBI Participants N/A
Recruiting NCT00785343 - Study of Robot-assisted Arm Therapy for Acute Stroke Patients Phase 1
Recruiting NCT05152433 - Evidence-Based Robot-Assistant in Neurorehabilitation N/A
Terminated NCT04266158 - FAME: Functional Assessment of a Myoelectric Orthosis Hand Orthoses N/A
Completed NCT02577276 - Evaluation of a Tele-Rehabilitation Service Program N/A
Recruiting NCT02208219 - Music Therapy to Restore Motor Deficits After Stroke N/A
Completed NCT03727919 - Exoskeleton-assisted Training to Accelerate Walking Recovery Early After Stroke: the TARGET Phase II Study N/A
Completed NCT03728036 - What do Stroke Survivors Actually Learn When Regaining Walking Ability After Stroke? The TARGET Phase I Study
Not yet recruiting NCT06282406 - Pupil-Indexed Noninvasive Neuromodulation N/A
Completed NCT02725853 - Enhancing Recovery of Arm Movement in Stroke Patients N/A
Recruiting NCT01579604 - Nerve Transfer Reconstruction in the Tetraplegic Upper Extremity Phase 4
Completed NCT02059070 - Bupivacaine Versus Ropivacaine on Diaphragmatic Motility and Ventilatory Function N/A
Recruiting NCT03270852 - Enhanced Reality for Hemiparetic Arm in the Stroke Patients N/A
Recruiting NCT05316519 - Transcutaneous Auricular Vagus Nerve Stimulation to Enhance Motor Learning N/A
Terminated NCT04005235 - FOT Assessment of Hemi-diaphragm Dysfunction After Upper Extremity Nerve Blocks
Completed NCT02066948 - Meal Patterning on Weight Loss With Changes to Body Comp, Muscle and Metabolic Health N/A
Completed NCT00833105 - Rehabilitation of the Upper Extremity With Enhanced Proprioceptive Feedback Following Incomplete Spinal Cord Injury N/A
Completed NCT00212394 - Tourniquet Complications in Orthopaedic Surgery N/A
Completed NCT03026712 - Hemiparetic Arm Robotic Mobilization With Non Invasive Electrical Stimulation N/A