Overweight and Obesity Clinical Trial
Official title:
Efficacy of microRNA Testing for Identification of Personalized Weight Management Strategy in Obese and Overweight Individuals.
Certain blood markers are related to one's ability to successfully lose weight by diet and exercise. Currently, the laboratory tests used to measure these blood markers are expensive and time-consuming. Recently, the Electrical and Computer Engineering Department, at NDSU, invented a device that may be able to measure these blood markers much more quickly and affordably. This study is designed participate, to compare our new device to previous methods. If the new sensor is successful, it will be used as diagnostic tool to personalize weight loss strategies.
Obesity is increasing exponentially in the United States (US), and over 160 million Americans are either overweight or obese. A combined diet and exercise program is the most cost-effective alternative for weight management, but there is a considerable inter-individual variability in losing weight via this method, which leaves many individuals frustrated and unable to adhere to programs throughout the lifespan. Therefore, the inability to identify the individuals who will likely succeed with diet and exercise for weight management is a critical roadblock to treating obesity. Recent studies have shown that significant variability in weight loss response to diet and exercise could be attributed in part to individual epigenetic makeup. One potential approach for monitoring the epigenetic response during weight-loss interventions is small non-coding circulating RNAs, called microRNAs (miRNAs or miRs), in the circulating blood. Studies have shown that miR-140 and 935 could be used as blood biomarkers to identify individuals who will succeed in managing their weight through diet and exercise. Moreover, during a short diet and exercise intervention, fluctuations of expression levels of biomarker miRNAs pre- and post-intervention have produced unique signature changes only in the individuals who continued the intervention for an extended period of time and attained a healthy body weight. Thus, if implemented early in a medical weight loss program it could allow for the patient to have a focused individualized treatment. A major barrier that prevents the use of miRNAs in weight loss interventions is the inability of accurately quantifying miR-140 and 935 levels in blood samples. To minimize the miRNA contamination from red-blood cell lysis, miRNA analysis must be performed within 30 minutes of blood draw. Current miRNA detection and quantification technologies take hours/days to quantify miRNAs, require bulky equipment, and are expensive. In addition, current miRNA detection methods do not have sufficient sensitivity, detection span and specificity for clinical sample analysis. To address this need, PI. Nawarathna has recently developed a highly sensitive disposable miRNA sensor that can quantify miRNAs in point-of-care settings within 15 minutes with an assay cost of $50 per test. However, the effectiveness of the developed miRNA sensor to accurately quantify the variations of target miRNA levels (miR-140 and 935) pre- and post-diet and exercise intervention is unknown. The objective of the proposed work is to investigate the efficacy of this miRNA sensor as a potential diagnostic device in weight management. If successful, the impact of proposed the research is two-fold: first, development of a point-of-care diagnostic device (miRNA sensor) for providing a personalized strategy for weight management (diet and exercise or bariatric surgery) and second, ability to immediately expand miRNA detection to measure other factors that can impact overall well-being (e.g.: mental and emotional health, stress, and fatigue) and diseases (e.g.: cancer, cardiovascular diseases, and others). The objective of the proposed research will be achieved through following this specific aim: Aim: To investigate if the miRNA sensor is capable of identifying individuals who will consistently lose weight with energy restricted diet and exercise intervention. The proposed research will develop a pilot study with overweight individuals as participants. Subjects will participate in the diet and exercise intervention for 12 weeks and miRNA analysis will be performed at 3 time points during the intervention (pre-mid-post). We will then investigate the effectiveness of the sensor. The miRNA sensor technology, once fully developed, will be similar to a finger prick glucose monitor. Once commercially available, miRNA sensors can be purchased and used for diagnostic applications in clinics or self-testing at home or remote and rural area clinics and hospitals. Therefore, the outcomes will fundamentally advance how the individualized weight management method is selected. For this reason, this research has a positive translational impact on human health. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Not yet recruiting |
NCT03994419 -
PErioperAtive CHildhood ObesitY
|
||
Recruiting |
NCT05354245 -
Using a Complex Carbohydrate Mixture to Steer Fermentation and Improve Metabolism in Adults With Overweight and Prediabetes (DISTAL)
|
N/A | |
Completed |
NCT03602001 -
Attentive Eating for Weight Loss
|
N/A | |
Recruiting |
NCT06269159 -
The Power of 24-hour: Co-designing Intervention Components
|
||
Completed |
NCT03377244 -
Healthy Body Healthy Souls in the Marshallese Population
|
N/A | |
Completed |
NCT02996864 -
Location-based Smartphone Technology to Guide College Students Healthy Choices Ph II
|
N/A | |
Completed |
NCT04647149 -
Effects of Early and Delayed Time-restricted Eating in Adults With Overweight and Obesity
|
N/A | |
Terminated |
NCT03914066 -
A Group-based Treatment of Overweight and Obesity in Primary Care
|
N/A | |
Completed |
NCT03685656 -
Effect of ANACA3 Slimming Gel on Loss of Abdominal and Thigh Circumferences in Healthy Volunteers
|
N/A | |
Completed |
NCT05051579 -
A Study of LY3502970 in Participants With Obesity or Overweight With Weight-related Comorbidities
|
Phase 2 | |
Completed |
NCT04611477 -
Effect of Synbiotic 365 on Body Composition in Overweight and Obese Individuals
|
N/A | |
Active, not recruiting |
NCT05330247 -
Cut Down on Carbohydrate in the Dietary Therapy of Type 2 Diabetes - The Meal Box Study
|
N/A | |
Completed |
NCT03599115 -
Effects of Inhibitory Control Training in Eating Behaviors
|
N/A | |
Recruiting |
NCT05938894 -
Train Your Brain - Executive Function
|
N/A | |
Recruiting |
NCT06094231 -
Treating Patients With Renal Impairment and Altered Glucose MetAbolism With TherapeutIc Carbohydrate Restriction and Sglt2-Inhibiton - a Pilot Study
|
N/A | |
Recruiting |
NCT05987306 -
A Self-compassion Focused Intervention for Internalized Weight Bias and Weight Loss
|
N/A | |
Completed |
NCT03792685 -
Looking for Personalized Nutrition for Obesity/Type 2 Diabetes Mellitus Prevention
|
N/A | |
Completed |
NCT05055362 -
Effect a Honey, Spice-blended Baked Good Has on Salivary Inflammation Markers in Adults: a Pilot Study
|
N/A | |
Completed |
NCT04520256 -
Rapid Evaluation of Innovative Intervention Components to Maximize the Health Benefits of Behavioral Obesity Treatment Delivered Online: An Application of Multiphase Optimization Strategy
|
Phase 2/Phase 3 | |
Completed |
NCT04979234 -
A Single Centre, Prospective Feasibility Study to Evaluate the Efficacy of an Endoluminal-suturing Device (Endomina) on Severe Obstructive Sleep Apnea Syndrome
|
N/A |