Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT06446726
Other study ID # 18081312828
Secondary ID
Status Not yet recruiting
Phase Phase 2
First received
Last updated
Start date June 30, 2024
Est. completion date December 30, 2026

Study information

Verified date June 2024
Source Sichuan University
Contact Yong Yuan, Professor
Phone +86 18980606739
Email yongyuan@scu.edu.cn
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

This study aims to investigate the efficacy and safety of low-dose radiation combined with neoadjuvant chemotherapy and immunotherapy in the treatment of locally advanced thoracic esophageal squamous cell carcinoma. By reducing the radiation dose from 40 Gy in 20 fractions to 4 Gy in 2 fractions, the goal is to lessen the adverse reactions caused by radiotherapy. Additionally, the study explores whether low-dose radiation therapy can promote the cross-presentation of tumor-specific antigens and increase lymphocyte infiltration into the tumor site. Study also examines whether this approach can enhance tumor-specific immune responses, thereby potentially improving the efficacy of immune checkpoint inhibitors.


Description:

According to 2020 GLOBOCAN data, esophageal cancer ranks fifth in incidence among all malignant tumors in China, with new cases reaching 324,000 and annual deaths at 301,000. These figures indicate a significant burden of esophageal cancer in China, accounting for 55% of esophageal cancer cases globally. Unlike in Western countries, most esophageal cancer patients in China have squamous cell carcinoma, and 40% are diagnosed at an advanced stage. Surgery is a key treatment for locally advanced esophageal cancer, but patients may achieve better clinical outcomes if they receive neoadjuvant therapy before surgery. However, the prognosis for these patients remains relatively poor. From 2009 to 2015, the overall 5-year relative survival rate for esophageal cancer was 21.4%, with local tumors at 46.7%, regional metastasis at 25.1%, and distant metastasis at only 4.8%. In recent years, immunotherapy has shown significant survival benefits in patients with advanced esophageal cancer. Immuno-chemotherapy has now become the standard first-line treatment for advanced esophageal cancer. Currently, the introduction of immunotherapy as neoadjuvant treatment in locally advanced esophageal cancer is a highly regarded research area. Many studies are underway involving the combined application of neoadjuvant chemotherapy and immunotherapy, as well as neoadjuvant chemoradiotherapy and immunotherapy. Regarding safety, tislelizumab is similar to foreign similar drugs, mostly causing grade 1-2 adverse reactions, and is within a controllable range. Our center's previous research results have shown that tislelizumab can be used as a neoadjuvant immunotherapy drug for esophageal squamous cell carcinoma, with good perioperative safety. It is worth noting that recent study reports indicate that the pathological complete response (PCR) rate of neoadjuvant chemotherapy combined with immunotherapy in small sample studies ranges from 17% to 22%, showing significant heterogeneity. Recently, Chinese scholars published a study in the international authoritative academic journal "Nature Medicine," indicating that using a PD-L1 antibody for immunotherapy combined with surgery, although the PCR rate was only 8%, the long-term survival effect was comparable to traditional chemoradiotherapy. This further proves that compared to traditional neoadjuvant chemoradiotherapy, neoadjuvant immunotherapy has broad development potential. However, the local control effects of immunotherapy alone or combined with chemotherapy are still unsatisfactory, which may affect the radical outcome of surgery and the long-term survival of patients. Therefore, combining more effective local treatment methods with immunotherapy is undoubtedly a more promising treatment option. Low-dose radiotherapy (LDRT) is generally defined as a treatment not exceeding 2 Gy per session, totaling no more than 10 Gy, and is considered a non-ablative treatment [13]. The low toxicity of low-dose radiotherapy makes it a treatment option for those not suitable for body-targeted radiation therapy. Furthermore, although low-dose radiotherapy does not directly kill cancer cells, it can promote tumor regression by readjusting the tumor immune microenvironment. Low-dose radiotherapy damages cell DNA, causing previously hidden or difficult-to-recognize tumor antigens to be exposed on the cell surface. This change promotes the cross-presentation of tumor-specific antigens, increases lymphocyte infiltration into the tumor site, enhances tumor-specific immune responses, and further improves the efficacy of immune checkpoint inhibitors. Preoperative immunotherapy can activate the patient's immune system, enabling it to recognize tumor antigens and establish immune memory. This allows the immune system to continue to function in immune surveillance after the surgical removal of the tumor. Currently, the main focus of clinical research is on how to maximize the synergistic effects between different treatment modalities to achieve the best survival outcomes for patients with locally advanced esophageal cancer while minimizing treatment side effects. This study is a Phase IIA clinical trial, a preliminary study of efficacy and safety. This study envisions a comprehensive treatment of neoadjuvant low-dose radiotherapy combined with chemotherapy and immunotherapy (chemo-immuno), which, by reducing the radiotherapy dose, can enhance local control efficacy and reduce adverse reactions caused by the combined treatment mode. Therefore, it is proposed to perform neoadjuvant low-dose radiotherapy combined with chemo-immuno treatment in patients with locally advanced esophageal squamous cell carcinoma, adjust the preoperative radiotherapy dose from 40 Gy/20f to 4 Gy/2f, evaluate the efficacy and safety of this treatment mode, and provide more evidence for the neoadjuvant treatment model for locally advanced esophageal cancer patients. Additionally, exploratory analyses of preoperative and postoperative tissue and blood samples will be conducted to understand the impact of preoperative low-dose radiotherapy combined with immunotherapy on the esophageal cancer immune microenvironment; suitable biological markers will be selected to identify the optimal beneficiary group.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 30
Est. completion date December 30, 2026
Est. primary completion date January 30, 2025
Accepts healthy volunteers No
Gender All
Age group 18 Years to 75 Years
Eligibility Inclusion Criteria: 1. Histologically confirmed thoracic esophageal squamous cell carcinoma with clinical staging of: cT1b-cT2 N1-2 M0 or cT3-cT4a N0-2 M0 (AJCC/UICC esophageal cancer staging, 8th edition) 2. Candidates eligible for an R0 curative resection 3. ECOG performance status of 0-1 4. Male or female patients aged =18 years and =75 years 5. Adequate major organ and bone marrow function (without transfusion or medication correction): Complete blood count: White blood cells = 3.5×10^9/L, Absolute Neutrophil Count (ANC) =1.5 ×10^9/L, Platelets =100×10^9/L, Hemoglobin =9g/dL 6. Radiation oncologist assessment confirms no severe pulmonary ventilatory dysfunction and no acute cardiac failure. (Pulmonary function: FEV1/FVC=70%, FEV1=50% of the normal value, DLCO (lung diffusion capacity) actual versus predicted value >80%) 7. Liver function: Total bilirubin =1.5 times the upper limit of normal (ULN), Alanine aminotransferase (ALT) and/or Aspartate aminotransferase (AST) =2.5 times ULN, Serum albumin =3g/dL 8. Renal function: Serum creatinine =1.5×ULN, or creatinine clearance = 60ml/min (calculated using the Cockcroft/Gault formula): Female: CrCl = (140 - age) x weight (kg) x 0.85 / 72 x serum creatinine (mg/dL) Male: CrCl = (140 - age) x weight (kg) x 1.00 / 72 x serum creatinine (mg/dL) 9. Study participants voluntarily join the study and sign a written informed consent form, and are able to comply with the protocol-specified visits and related procedures 10. Expected survival >6 months 11. Patients agree to undergo surgical treatment as well as radiotherapy, chemotherapy, and immunotherapy 12. Women of childbearing potential must have a negative pregnancy test within 7 days prior to the initiation of treatment; all participants, regardless of gender, are willing to use appropriate contraceptive methods during the trial and for 8 weeks after the last dose of study medication 13. No esophageal perforation or active esophageal bleeding, and no tracheal or major thoracic vascular invasion 14. According to the solid tumor response evaluation criteria (RECIST version 1.1), at least one measurable lesion by imaging Exclusion Criteria: 1. Patients who are unsuitable for the immunotherapy and chemotherapy specified in the protocol 2. Patients with a history of treatment for ESCC, including experimental drugs, chemotherapy, radiotherapy, or therapies targeting T-cell co-stimulation checkpoint pathways such as anti-PD-1, anti-PD-L1, anti-PD-L2 antibodies or drugs 3. Patients with a history of primary tumor infiltration causing fistula 4. Patients assessed as having a high risk of fistula or signs of perforation 5. Patients who have required systemic corticosteroid treatment (prednisone > 10 mg/day or equivalent dosage) or other immunosuppressive therapies within 14 days prior to the first administration. However, use of adrenocortical replacement steroids (prednisone = 10 mg/day or equivalent) and minimal systemic absorption of topical, ocular, intra-articular, nasal, and inhaled corticosteroids, as well as short-term (= 7 days) use of corticosteroids for non-autoimmune conditions are allowed (dexamethasone can be used for paclitaxel pre-treatment) 6. Patients with active autoimmune diseases or a history of autoimmune diseases that might recur. However, participants with well-controlled type 1 diabetes, hypothyroidism requiring only hormone replacement, well-controlled celiac disease, and non-systemic treated skin conditions like vitiligo, psoriasis, or alopecia, or conditions not likely to recur without an external trigger are eligible 7. Patients with a history of interstitial lung disease, non-infectious pneumonia, or poorly controlled pulmonary diseases including pulmonary fibrosis or acute lung diseases 8. Patients needing systemic antibacterial, antifungal, or antiviral treatment for infections such as tuberculosis. Patients who have had a severe infection including but not limited to hospitalization-required complications, bacteremia, or severe infectious pneumonia within 4 weeks before the first administration, or those who have received therapeutic oral or intravenous antibiotics within 2 weeks before the first administration 9. Patients with a history of allogeneic organ transplant (excluding corneal transplant) or allogeneic hematopoietic stem cell transplant 10. Patients known to be allergic to the study drug tiragolumab, or to the active ingredients or excipients in the combined chemotherapy drugs 11. Patients with significant and severely symptomatic rhythm, conduction, or morphological abnormalities on a resting electrocardiogram, such as complete left bundle branch block, second-degree or higher heart block, ventricular arrhythmias, atrial fibrillation; unstable angina, congestive heart failure, or chronic heart failure with an NYHA classification of = 2

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Tislelizumab
Patients will undergo two cycles of immunotherapy, each cycle lasting 21 days. Day 3 and Day 24: Tislelizumab, fixed dose of 200 mg
Radiation:
Low-dose radiotherapy
Patients will undergo two cycles of low-dose radiotherapy. Day 1/2 and Day 22/23: Low-dose radiotherapy (8 Gy/4f)
Drug:
Nab-paclitaxel
Patients will undergo two cycles of chemotherapy. Day 3 and Day 24: Nab-paclitaxel 260 mg/m2
Cisplatin
Patients will undergo two cycles of chemotherapy. Day 3 and Day 24: Cisplatin 75 mg/m2.

Locations

Country Name City State
n/a

Sponsors (1)

Lead Sponsor Collaborator
Sichuan University

References & Publications (4)

Barsoumian HB, Ramapriyan R, Younes AI, Caetano MS, Menon H, Comeaux NI, Cushman TR, Schoenhals JE, Cadena AP, Reilly TP, Chen D, Masrorpour F, Li A, Hong DS, Diab A, Nguyen QN, Glitza I, Ferrarotto R, Chun SG, Cortez MA, Welsh J. Low-dose radiation treatment enhances systemic antitumor immune responses by overcoming the inhibitory stroma. J Immunother Cancer. 2020 Oct;8(2):e000537. doi: 10.1136/jitc-2020-000537. — View Citation

Gupta A, Probst HC, Vuong V, Landshammer A, Muth S, Yagita H, Schwendener R, Pruschy M, Knuth A, van den Broek M. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J Immunol. 2012 Jul 15;189(2):558-66. doi: 10.4049/jimmunol.1200563. Epub 2012 Jun 8. — View Citation

Herrera FG, Ronet C, Ochoa de Olza M, Barras D, Crespo I, Andreatta M, Corria-Osorio J, Spill A, Benedetti F, Genolet R, Orcurto A, Imbimbo M, Ghisoni E, Navarro Rodrigo B, Berthold DR, Sarivalasis A, Zaman K, Duran R, Dromain C, Prior J, Schaefer N, Bourhis J, Dimopoulou G, Tsourti Z, Messemaker M, Smith T, Warren SE, Foukas P, Rusakiewicz S, Pittet MJ, Zimmermann S, Sempoux C, Dafni U, Harari A, Kandalaft LE, Carmona SJ, Dangaj Laniti D, Irving M, Coukos G. Low-Dose Radiotherapy Reverses Tumor Immune Desertification and Resistance to Immunotherapy. Cancer Discov. 2022 Jan;12(1):108-133. doi: 10.1158/2159-8290.CD-21-0003. Epub 2021 Sep 3. — View Citation

Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, Klapproth K, Schakel K, Garbi N, Jager D, Weitz J, Schmitz-Winnenthal H, Hammerling GJ, Beckhove P. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 2013 Nov 11;24(5):589-602. doi: 10.1016/j.ccr.2013.09.014. Epub 2013 Oct 24. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Pathologic complete response The proportion of subjects with 0% of surviving tumor cells remaining in the primary tumor and in the sampled lymph nodes as evaluated by histology. Immediately after the surgery
Secondary Major pathological response Complete response (CR) + partial response (PR) was evaluated by RECIST 1.1 criteria Complete response (CR) + partial response (PR) was evaluated by RECIST 1.1 criteria Complete response (CR) + partial response (PR) was evaluated by RECIST 1.1 criteria Immediately after the surgery
Secondary R0 rate Intraoperative evaluation During the surgery
Secondary 1/2 year event-free survival The time of enrollment (i.e., signing the ICF) until the following events: any disease progression resulting in surgery not being performed, disease progression or recurrence after surgery, disease progression in patients without surgery, or death from any cause 2 years
Secondary Overall Response Rate Complete response (CR) + partial response (PR) was evaluated by RECIST 1.1 criteria Immediately after the surgery
See also
  Status Clinical Trial Phase
Recruiting NCT06056336 - Perioperative Tislelizumab Plus Chemotherapy for Resectable Thoracic Oesophageal Squamous Cell Carcinoma Phase 2
Suspended NCT04084158 - A Study of Toripalimab Combined With Concurrent Chemoradiotherapy for Locally Advanced Esophageal Squamous Cell Carcinoma. Phase 2
Active, not recruiting NCT04242199 - Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of INCB099280 in Participants With Advanced Solid Tumors Phase 1
Not yet recruiting NCT05561699 - Sequential Preoperative Penpulimab Combined With Chemoradiotherapy(CRT) for Locally Advanced Esophageal Squamous Cell Cancer N/A
Active, not recruiting NCT04543617 - A Study of Atezolizumab With or Without Tiragolumab in Participants With Unresectable Esophageal Squamous Cell Carcinoma Whose Cancers Have Not Progressed Following Definitive Concurrent Chemoradiotherapy Phase 3
Recruiting NCT06190782 - Local Therapy for Oligometastatic ESCC Patients Treated With PD-1 Inhibitor Phase 3
Completed NCT05557955 - Identification of Breath Biomarkers in Esophageal Cancer
Recruiting NCT04045496 - A First-in-Human, Phase 1 Study of JAB-3312 in Adult Patients With Advanced Solid Tumors Phase 1
Recruiting NCT04584008 - Targeted Agent Evaluation in Digestive Cancers in China Based on Molecular Characteristics N/A
Not yet recruiting NCT03766178 - Study of Anti-PD-1 Antibody SHR-1210 Plus Nimotuzumab in the Treatment of Advanced Esophageal Squamous Cell Carcinoma Phase 2
Recruiting NCT02913066 - S-1 IMRT Versus S-1 and Cisplatin Concurrent IMRT in Inoperable Esophageal Squamous Cell Carcinoma Phase 2
Completed NCT02399306 - Chemoradiotherapy With or Without Enteral Nutrition for Locally Advanced Thoracic Esophageal Carcinoma Phase 3
Completed NCT01605305 - Study on FOLFOX6 as First-line Therapy to Treat Recurrent or Metastatic Esophageal Cancer Phase 2
Not yet recruiting NCT05552651 - Envafolimab Combined With Chemotherapy in Neoadjuvant Therapy for Resectable Esophageal Squamous Cell Carcinoma Phase 2
Recruiting NCT05520619 - Combination of Tislelizumab and Chemoradiotherapy in Esophageal Cancer (EC-CRT-002) Phase 2
Terminated NCT03251417 - Apatinib and Irinotecan Combination Treatment in Unresectable or Metastatic Esophageal Squamous Cell Carcinoma Phase 2
Recruiting NCT05990231 - Cadonilimab/Anlotinib in Locally Advanced or Relapsed/Metastatic ESCC Patients After Failure of PD-1 Combined With Platinum-containing Chemotherapy Phase 2
Recruiting NCT04644250 - Combination of Toripalimab and Neoadjuvant Chemoradiotherapy for Locally Advanced Esophageal Squamous Cell Carcinoma Phase 2
Completed NCT02916511 - Study of Extensive Clinical Target Volumes in Postoperative Radiotherapy Concurrent With Chemotherapy for Esophageal Squamous Cell Carcinoma Phase 2
Terminated NCT04032704 - A Study of Ladiratuzumab Vedotin in Advanced Solid Tumors Phase 2