Lower Extremity Musculoskeletal Injury Clinical Trial
Official title:
Evaluation of Lower Extremity Athletic Injuries and Response to Treatment Using Shear Wave Elastography and Micro-vascular Flow Imaging
Primary Objective: To explore changes in shear wave elastography (SWE) and microvascular flow imaging (MFI) measurements from time of injury through the recovery phase of lower extremity musculoskeletal injuries to determine if a correlation exists with functional impairment. Secondary Objective: To develop a deep learning AI system for automated region of interest (ROI) determination for measurement of average SWE and MFI. Methodology: Eligible subjects with lower extremity injuries will undergo SWE and MFI measurements and complete the Lower Extremity Functional Scale questionnaire at each study visit. Clinical data related to the evaluation of the injury acquired during standard medical care of the injury will be collected from the patients' medical record such as CT or MRI scans, X-rays, physical exams and tests as well as laboratory measurements. Subjects will undergo serial SWE and MFI imaging throughout their rehabilitation episode of care to assess changes over time, status in rehabilitation and comparison to the contralateral extremity.
Status | Recruiting |
Enrollment | 80 |
Est. completion date | December 31, 2024 |
Est. primary completion date | December 31, 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 89 Years |
Eligibility | Inclusion Criteria: - Subjects age 18 - 89 years; - Able to sign an informed consent document; - Suspected MSK injury of the lower extremity (i.e. hamstring injuries and soft tissue injuries involving the ankle). Exclusion Criteria: - Prior fasciotomy of same limb; - Hemodialysis grafts of involved extremity; - Extremity wounds preventing ultrasound imaging. |
Country | Name | City | State |
---|---|---|---|
United States | University of Oregon | Eugene | Oregon |
United States | Oregon Health & Science University | Portland | Oregon |
Lead Sponsor | Collaborator |
---|---|
Oregon Health and Science University | University of Oregon |
United States,
Belmont PJ, Schoenfeld AJ, Goodman G. Epidemiology of combat wounds in Operation Iraqi Freedom and Operation Enduring Freedom: orthopaedic burden of disease. J Surg Orthop Adv. 2010 Spring;19(1):2-7. — View Citation
Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Apr;51(4):396-409. doi: 10.1109/tuffc.2004.1295425. Erratum In: IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jul;67(7):1492-1494. — View Citation
Binkley JM, Stratford PW, Lott SA, Riddle DL. The Lower Extremity Functional Scale (LEFS): scale development, measurement properties, and clinical application. North American Orthopaedic Rehabilitation Research Network. Phys Ther. 1999 Apr;79(4):371-83. — View Citation
Brandenburg JE, Eby SF, Song P, Zhao H, Brault JS, Chen S, An KN. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness. Arch Phys Med Rehabil. 2014 Nov;95(11):2207-19. doi: 10.1016/j.apmr.2014.07.007. Epub 2014 Jul 24. — View Citation
Brandenburg JE, Eby SF, Song P, Zhao H, Landry BW, Kingsley-Berg S, Bamlet WR, Chen S, Sieck GC, An KN. Feasibility and reliability of quantifying passive muscle stiffness in young children by using shear wave ultrasound elastography. J Ultrasound Med. 2015 Apr;34(4):663-70. doi: 10.7863/ultra.34.4.663. — View Citation
Catheline S, Thomas JL, Wu F, Fink MA. Diffraction field of a low frequency vibrator in soft tissues using transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(4):1013-9. doi: 10.1109/58.775668. — View Citation
Creze M, Nordez A, Soubeyrand M, Rocher L, Maitre X, Bellin MF. Shear wave sonoelastography of skeletal muscle: basic principles, biomechanical concepts, clinical applications, and future perspectives. Skeletal Radiol. 2018 Apr;47(4):457-471. doi: 10.1007/s00256-017-2843-y. Epub 2017 Dec 9. — View Citation
Dunford EC, Au JS, Devries MC, Phillips SM, MacDonald MJ. Cardiovascular aging and the microcirculation of skeletal muscle: using contrast-enhanced ultrasound. Am J Physiol Heart Circ Physiol. 2018 Nov 1;315(5):H1194-H1199. doi: 10.1152/ajpheart.00737.2017. Epub 2018 Aug 3. — View Citation
Ganesan S, Man CS, Lai-Fook SJ. Generation and detection of lung stress waves from the chest surface. Respir Physiol. 1997 Oct;110(1):19-32. doi: 10.1016/s0034-5687(97)00065-0. — View Citation
Gliemann L, Mortensen SP, Hellsten Y. Methods for the determination of skeletal muscle blood flow: development, strengths and limitations. Eur J Appl Physiol. 2018 Jun;118(6):1081-1094. doi: 10.1007/s00421-018-3880-5. Epub 2018 May 14. — View Citation
GREENFIELD AD, WHITNEY RJ, MOWBRAY JF. Methods for the investigation of peripheral blood flow. Br Med Bull. 1963 May;19:101-9. doi: 10.1093/oxfordjournals.bmb.a070026. No abstract available. — View Citation
Hildebrandt W, Schwarzbach H, Pardun A, Hannemann L, Bogs B, Konig AM, Mahnken AH, Hildebrandt O, Koehler U, Kinscherf R. Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS). PLoS One. 2017 Mar 8;12(3):e0172771. doi: 10.1371/journal.pone.0172771. eCollection 2017. — View Citation
Jorfeldt L, Wahren J. [Leg blood supply during exercise: methodological studies with a dye dilution technic]. Nord Med. 1971 Aug 26;86(34):1009. No abstract available. Swedish. — View Citation
Kelly JF, Ritenour AE, McLaughlin DF, Bagg KA, Apodaca AN, Mallak CT, Pearse L, Lawnick MM, Champion HR, Wade CE, Holcomb JB. Injury severity and causes of death from Operation Iraqi Freedom and Operation Enduring Freedom: 2003-2004 versus 2006. J Trauma. 2008 Feb;64(2 Suppl):S21-6; discussion S26-7. doi: 10.1097/TA.0b013e318160b9fb. — View Citation
Kragh JF Jr, Wade CE, Baer DG, Jones JA, Walters TJ, Hsu JR, Wenke JC, Blackbourne LH, Holcomb JB. Fasciotomy rates in operations enduring freedom and iraqi freedom: association with injury severity and tourniquet use. J Orthop Trauma. 2011 Mar;25(3):134-9. doi: 10.1097/BOT.0b013e3181e52333. — View Citation
Lacourpaille L, Hug F, Bouillard K, Hogrel JY, Nordez A. Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus. Physiol Meas. 2012 Mar;33(3):N19-28. doi: 10.1088/0967-3334/33/3/N19. Epub 2012 Feb 28. — View Citation
Mauser N, Gissel H, Henderson C, Hao J, Hak D, Mauffrey C. Acute lower-leg compartment syndrome. Orthopedics. 2013 Aug;36(8):619-24. doi: 10.3928/01477447-20130724-07. — View Citation
McMillan TE, Gardner WT, Schmidt AH, Johnstone AJ. Diagnosing acute compartment syndrome-where have we got to? Int Orthop. 2019 Nov;43(11):2429-2435. doi: 10.1007/s00264-019-04386-y. Epub 2019 Aug 29. — View Citation
Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995 Sep 29;269(5232):1854-7. doi: 10.1126/science.7569924. — View Citation
Nguyen T, Davidson BP. Contrast Enhanced Ultrasound Perfusion Imaging in Skeletal Muscle. J Cardiovasc Imaging. 2019 Jul;27(3):163-177. doi: 10.4250/jcvi.2019.27.e31. Epub 2019 May 20. — View Citation
Nightingale KR, Palmeri ML, Nightingale RW, Trahey GE. On the feasibility of remote palpation using acoustic radiation force. J Acoust Soc Am. 2001 Jul;110(1):625-34. doi: 10.1121/1.1378344. — View Citation
Parker KJ, Huang SR, Musulin RA, Lerner RM. Tissue response to mechanical vibrations for "sonoelasticity imaging". Ultrasound Med Biol. 1990;16(3):241-6. doi: 10.1016/0301-5629(90)90003-u. — View Citation
Ritenour AE, Blackbourne LH, Kelly JF, McLaughlin DF, Pearse LA, Holcomb JB, Wade CE. Incidence of primary blast injury in US military overseas contingency operations: a retrospective study. Ann Surg. 2010 Jun;251(6):1140-4. doi: 10.1097/SLA.0b013e3181e01270. — View Citation
Ritenour AE, Dorlac WC, Fang R, Woods T, Jenkins DH, Flaherty SF, Wade CE, Holcomb JB. Complications after fasciotomy revision and delayed compartment release in combat patients. J Trauma. 2008 Feb;64(2 Suppl):S153-61; discussion S161-2. doi: 10.1097/TA.0b013e3181607750. — View Citation
Rush RM Jr, Beekley AC, Puttler EG, Kjorstad RJ. The mangled extremity. Curr Probl Surg. 2009 Nov;46(11):851-926. doi: 10.1067/j.cpsurg.2009.05.003. No abstract available. — View Citation
Sadeghi S, Johnson M, Bader DA, Cortes DH. The shear modulus of lower-leg muscles correlates to intramuscular pressure. J Biomech. 2019 Jan 23;83:190-196. doi: 10.1016/j.jbiomech.2018.11.045. Epub 2018 Dec 10. — View Citation
Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. AN OVERVIEW OF ELASTOGRAPHY - AN EMERGING BRANCH OF MEDICAL IMAGING. Curr Med Imaging Rev. 2011 Nov;7(4):255-282. doi: 10.2174/157340511798038684. — View Citation
Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998 Nov;24(9):1419-35. doi: 10.1016/s0301-5629(98)00110-0. — View Citation
Sboros V, Tang MX. The assessment of microvascular flow and tissue perfusion using ultrasound imaging. Proc Inst Mech Eng H. 2010;224(2):273-90. doi: 10.1243/09544119JEIM621. — View Citation
Shadgan B, Pereira G, Menon M, Jafari S, Darlene Reid W, O'Brien PJ. Risk factors for acute compartment syndrome of the leg associated with tibial diaphyseal fractures in adults. J Orthop Traumatol. 2015 Sep;16(3):185-92. doi: 10.1007/s10195-014-0330-y. Epub 2014 Dec 28. — View Citation
WILD JJ, NEAL D. Use of high-frequency ultrasonic waves for detecting changes of texture in living tissues. Lancet. 1951 Mar 24;1(6656):655-7. doi: 10.1016/s0140-6736(51)92403-8. No abstract available. — View Citation
* Note: There are 31 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | kPa | Tissue stiffness measured by shear wave elastography | Within 48 hours | |
Primary | kPa | Tissue stiffness measured by shear wave elastography | 5 days post injury (+/- 2 days) | |
Primary | kPa | Tissue stiffness measured by shear wave elastography | 6 weeks post injury (+/- 1 week) | |
Primary | kPa | Tissue stiffness measured by shear wave elastography | 12 weeks post injury (+/- 1 week) | |
Primary | kPa | Tissue stiffness measured by shear wave elastography | 24 weeks post injury (+/- 1 week) | |
Primary | Presence of blood flow | Measured by microvascular flow imaging | Within 48 hours | |
Primary | Presence of blood flow | Measured by microvascular flow imaging | 5 days post injury (+/- 2 days) | |
Primary | Presence of blood flow | Measured by microvascular flow imaging | 6 weeks post injury (+/- 1 week) | |
Primary | Presence of blood flow | Measured by microvascular flow imaging | 12 weeks post injury (+/- 1 week) | |
Primary | Presence of blood flow | Measured by microvascular flow imaging | 24 weeks post injury (+/- 1 week) |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT01804894 -
Do Common Physical Tests Predict Injury or Performance
|
N/A |