Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT04997226
Other study ID # 04102020
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date September 1, 2020
Est. completion date October 30, 2023

Study information

Verified date February 2022
Source Bar-Ilan University, Israel
Contact Michal Lavidor, Prof.
Phone 0097235318171
Email michal.lavidor@gmail.com
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

According to the European Commission Special Report, till 2030 it is expected ca. 40% increase of population aged 66-79. Increasing population of elderly people in modern society has suggested that more individuals are expected to suffer from cognitive deficits, as chronological aging is usually accompanied by declined cognition, in particular memory functions. The cognitive decline reaches medical attention for about 5-25% of the elderly population (over 65 years of age) as they suffer from Mild Cognitive Impairment (MCI). MCI is usually referred to as an intermediate phase between the expected cognitive decline of normal aging and the pathological cognitive decline linked to dementia. In recent years, a new viewpoint argues that substantial improvement in cognitive function may be possible even in older age, using appropriately designed training programs. In the current project the investigators propose a potential intervention that might delay the onset of dementia by maintaining cognitive performance in general and improving in MCI in particular. The current approach is to employ cognitive enhancement protocols, such as the combination of non-invasive, low intensity electrical stimulation and memory training aiming to preserve and ultimately improve cognitive abilities in MCI and healthy elderly.


Description:

Aging is associated with several physiological changes that affect global functioning, daily activity and quality of life. For instance, cognitive functions progressively decline during normal aging, as evidenced by decreased episodic memory and working memory (WM) performance. The above mentioned cognitive decline reaches medical attention for about 5-25% of the elderly population (over 65 years of age) as they suffer from Mild Cognitive Impairment (MCI). MCI is usually referred to as an intermediate phase between the expected cognitive decline of normal aging and the pathological cognitive decline linked to dementia. Around 46% of people with MCI develop dementia within three years, compared to 3% of the age-matched population. According to Peterson's initial definition (Petersen, 2004), The selected technique to improve cognition as the investigators propose here is transcranial non invasive brain stimulation (TES). The investigators will employ a couple of these techniques of neuromodulation that have proven to influence performance in different cognitive domains. Here the investigators propose to combine the investigators' expertise and to investigate the effects on cognition and health of brain stimulation-based treatment in MCI patients compared to matched healthy controls, combine it with cognitive training and explore the longer term effects of the intervention. Objectives. The main objective of the proposed research is to explore the potential intervention based on non-invasive brain stimulation and cognitive training to improve cognition in the elderly. In particular the investigators aim to explore: 1. The immediate efficacy of various stimulation protocols with cognitive training on cognitive improvement in the elderly. 2. The long term effect of a selected stimulation protocol on MCI improvement in the elderly. According to a large controlled study on cognitive stimulation for people with MCI, the treatment proved effective in improving the functioning in several cognitive areas compared to a control group (Ball et al., 2002).The cognitive training in this study included a computerized training, which is more enjoyable and effective than pencil-and paper training due to its immediate feedback and engaging nature. In their systematic review of 26 studies on computerized cognitive training (CCT) for older people with known MCI, Hill et al. (2016) concluded that CCT is an efficient tool for cognitive enhancement in older people with MCI. The overall effect size on cognition score was moderate (Hedges' g=0.35); a large significant effect size on working memory; and there were moderate significant effect sizes for specific cognitive domains, such as verbal memory, non-verbal learning, attention and on psychological functioning measures. In contrast, and consistent with findings of previous CCT meta-analysis (Motter, Pimontel et al., 2016), there were insignificant results regarding executive functions, processing speed and non-verbal memory. The results on dementia patients, as opposed to MCI ones, were less optimistic: there was only a small but statistically significant effect size of the overall efficacy of the CCT on cognition enhancement. The researchers have previous works that revealed an enhanced training effect when it was combined with non-invasive brain stimulation, for example better cognitive control following training combined with Transcranial direct current stimulation (tDCS) compared to training alone (Ditye et al., 2012). Transcranial direct current stimulation (tDCS) is a safe, low-cost, non-invasive neurophysiological technique that consists in the application of mild (1-2 milliampere (mA)) electrical current on the scalp (Jacobson et al., 2012). There is growing evidence that tDCS, combined with cognitive stimulation, improves cognitive functioning among healthy adult subjects. Specifically, tDCS to the prefrontal cortex has been proved effective. Anodal stimulation of the left dorsolateral prefrontal cortex (DLPFC) increases the performance on a working memory task in young healthy adults. In a combined treatment of behavioral training and tDCS stimulation of ten sessions for 10 days, healthy elderly subjects increased working memory skills for up to 28 days (Park et al., 2014). tDCS has also been proved efficient for people with Alzheimer's Disease (AD) or other types of dementia. In one study, anodal tDCS was applied to both hemispheres of the temporal cortex in 30 minutes sessions for five successive days. Results showed a significant improvement in a visual recognition memory task. tDCS anodal stimulation of the Broca's region within the left inferiorfrontal gyrus (IFG) had some positive effects on verbal fluency among patients with MCI in a double-blind, crossover, sham-controlled stimulation study. Additional brain imaging analysis of these results indicated that there was also a reduction of compensatory upregulated activity within the frontal cortices. Manenti et al. (2016) have used anodal tDCS combined with physical therapies in MCI patients with Parkinson's disease (PD). Following daily administration of 2 mA stimulation for two weeks, subjects have improved their PD Cognitive Rating Scale scores and their verbal fluency test, in comparison with the sham control group. The efficacy of using tDCS in combination with cognitive training is yet controversial. A study on AD patients which used anodal tDCS to stimulate the left DLPFC in a name-face association learning task, found no additional effect to the tDCS stimulation beyond that of the behavioral training. In contrast to these findings, in a study of healthy subjects, the combination of tDCS stimulation and simultaneous cognitive behavioral training has been proved more effective than tDCS stimulation to the left DLPFC by itself (Martin, Liu, Alonzo et al., 2015). In a recent study (André et al., 2016), four sessions of anodal tDCS stimulation over the left DLPFC, in combination with different cognitive tasks, were applied to 21 patients with mild vascular dementia. There was a significant improvement up to two weeks later in visual short term memory (in a pictures naming task), verbal working memory (2-back task) and executive control (go/no go task) in the anodal stimulation group, Yet, there are still some considerable limitations to the research on tDCS effects on cognition and to its clinical applications. For instance, choosing the target area or network is, of course, critical. Various target areas have been used in different studies: frontal lobe, especially the DLPFC and the IFG, are natural candidates. Few studies have targeted the inferior parietal lobe, which might require further research. To overcome some of the problems the investigators will test another brain stimulation technique, transcranial alternating current stimulation (tACS) where promising previous results suggest that tACS over prefrontal areas might be a better tool to improve cognitive functions in the elderly. tACS, a specific subtype of Non-invasive Brain Stimulation methods (NIBS), is based on the application of low-intensity electrical currents oscillating sinusoidally at a predetermined frequency (Antal et al., 2008). TACS-mediated physiological and behavioral changes seems to be frequency-dependent, thus, tACS could interact with the on-going brain activity through cortical oscillatory entrainment. Since episodic memory decline is one of the most important markers of MCI, the investigators will test brain stimulation protocols that were found to affect different types of memory performance. Possible effects of transcranially applied oscillating currents on memory functions have been investigated on humans by using transcranial Slow Oscillation Stimulation (SO-tDCS; i.e., anodal transcranial direct current stimulation oscillating at 0.75 Hz in a trapezoid waveform-fashion, applied bi-frontally) in combination with on-line EEG recording during slow wave sleep (Marshall et al., 2006). Ripple-range oscillations in the hippocampus have also been associated with declarative memory consolidation. The co-PI, Prof. Antal reported that bilateral 140 Hz tACS over both DLPFC during encoding may have a positive effect on the consolidation of declarative material (Ambrus et al., 2015). Novel cross-frequency protocols (theta-gamma coupling) of tACS affected spatial working memory performance in humans: enhancement of working memory performance and increase of global neocortical connectivity were observed when bursts of high gamma oscillations (80-100 Hz) coincided with the peaks of the theta waves, whereas superimposition on the trough of the theta wave and low gamma frequency protocols were ineffective. In sum, evidence from recent studies portray a promising picture of this new line of research, suggesting that non-invasive brain stimulation techniques, in general, and tDCS and tACS, in particular, may be used to ameliorate cognitive dysfunction in patients in pre-dementia. Though prospects seem promising, the mixed results and inconclusive findings of several studies call for cautious. Hopefully, the proposed research will narrow the gap between theoretical knowledge and the clinical applicability of the findings for the sake of a treatment that can truly affect many people's lives. The current approach is to employ cognitive enhancement tools aiming to develop effective protocols that will preserve (and ultimately improve) cognitive abilities in MCI and healthy elderly. The main method are non-invasive brain stimulation tools, tDCS and tACS, combined with computer-based cognitive training in a multiple session design. Patient Registries: Each subject is met by the experimenters (PhD students) for 16 individual meetings. The baseline measurements and cognitive evaluation that is manually conducted by the experimenters is inserted and saved in local Excel files. The subjects' performance in the computerized games (the cognitive training) is automatically saved on the lab's computer. Quality assurance: the completeness and accuracy of the training log files is checked after every session. Standard Operating Procedures - a paper file is prepared for each subject to keep background and contact details, printed records of the subjects' performance in the memory evaluation tests (at baseline, immediately after completing the intervention, and 3 months after completing the intervention). Sample size assessment: The sample size was a priori calculated using More Power software (Campbell & Thompson, 2012) based on the effect size reported for memory enhancement by transcranial electrical stimulation by Jacobson et al. (2012) (d = 0.49). This established that with a α = 0.05, power = 0.95, 60 participants are necessary to detect a moderate-large effect. Statistical analysis plan: data will be analyzed with IBM Statistical Package for Windows, version 23 (IBM Corp., Armonk, N.Y., USA). The main analysis is a mixed design analysis that compares the experimental conditions (between subject factors) regarding their effect on memory performance in 2 episodic memory tests and 3 time points (within subjects variables). The cognitive status at baseline will serve as a covariate (the baseline scores). In addition, the investigators plan hierarchical regression to check how ongoing scores in the cognitive training predict episodic memory score at the end of the intervention.


Recruitment information / eligibility

Status Recruiting
Enrollment 120
Est. completion date October 30, 2023
Est. primary completion date October 30, 2022
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 55 Years to 75 Years
Eligibility Inclusion Criteria: normal or corrected-to-normal vision good general health independent living MoCa score of at least 24 - Exclusion Criteria: A history of acute or chronic neurological illness, heart disease, metabolic disorders, vascular disorders psychiatric disorder. epilepsy metal implants -

Study Design


Related Conditions & MeSH terms

  • Transcranial Alternating Current Stimulation
  • Transcranial Direct Current Stimulation

Intervention

Device:
tDCS or tACS over the left DLPFC with adaptive memory game
This intervention is described in arms 1 and 3.
Sham tDCS or tACS over the left DLPFC with adaptive memory game
This intervention is described in arms 2 and 4.

Locations

Country Name City State
Israel Department of Psychology Ramat Gan

Sponsors (1)

Lead Sponsor Collaborator
Bar-Ilan University, Israel

Country where clinical trial is conducted

Israel, 

References & Publications (17)

Ambrus GG, Pisoni A, Primaßin A, Turi Z, Paulus W, Antal A. Bi-frontal transcranial alternating current stimulation in the ripple range reduced overnight forgetting. Front Cell Neurosci. 2015 Sep 24;9:374. doi: 10.3389/fncel.2015.00374. eCollection 2015. — View Citation

André S, Heinrich S, Kayser F, Menzler K, Kesselring J, Khader PH, Lefaucheur JP, Mylius V. At-home tDCS of the left dorsolateral prefrontal cortex improves visual short-term memory in mild vascular dementia. J Neurol Sci. 2016 Oct 15;369:185-190. doi: 10 — View Citation

Antal A, Boros K, Poreisz C, Chaieb L, Terney D, Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008 Apr;1(2):97-105. doi: 10.1016/j.brs.2007.10.001. Epub — View Citation

Ball K, Berch DB, Helmers KF, Jobe JB, Leveck MD, Marsiske M, Morris JN, Rebok GW, Smith DM, Tennstedt SL, Unverzagt FW, Willis SL; Advanced Cognitive Training for Independent and Vital Elderly Study Group. Effects of cognitive training interventions with — View Citation

Campbell JI, Thompson VA. MorePower 6.0 for ANOVA with relational confidence intervals and Bayesian analysis. Behav Res Methods. 2012 Dec;44(4):1255-65. doi: 10.3758/s13428-012-0186-0. — View Citation

Ditye T, Jacobson L, Walsh V, Lavidor M. Modulating behavioral inhibition by tDCS combined with cognitive training. Exp Brain Res. 2012 Jun;219(3):363-8. doi: 10.1007/s00221-012-3098-4. Epub 2012 Apr 25. — View Citation

Hill NT, Mowszowski L, Naismith SL, Chadwick VL, Valenzuela M, Lampit A. Computerized Cognitive Training in Older Adults With Mild Cognitive Impairment or Dementia: A Systematic Review and Meta-Analysis. Am J Psychiatry. 2017 Apr 1;174(4):329-340. doi: 10 — View Citation

Jacobson L, Koslowsky M, Lavidor M. tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res. 2012 Jan;216(1):1-10. doi: 10.1007/s00221-011-2891-9. Epub 2011 Oct 12. Review. — View Citation

Jacoby N, Lavidor M. Null tDCS Effects in a Sustained Attention Task: The Modulating Role of Learning. Front Psychol. 2018 Apr 6;9:476. doi: 10.3389/fpsyg.2018.00476. eCollection 2018. — View Citation

Manenti R, Sandrini M, Brambilla M, Cotelli M. The optimal timing of stimulation to induce long-lasting positive effects on episodic memory in physiological aging. Behav Brain Res. 2016 Sep 15;311:81-86. doi: 10.1016/j.bbr.2016.05.028. Epub 2016 May 13. — View Citation

Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006 Nov 30;444(7119):610-3. Epub 2006 Nov 5. — View Citation

Martin DM, Liu R, Alonzo A, Green M, Loo CK. Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation. Exp Brain Res. 2014 Oct;232(10):3345-51. doi: 10.1007/s00221-014-4022-x. Epub 2014 Jul 4. — View Citation

Meiron O, Lavidor M. Prefrontal oscillatory stimulation modulates access to cognitive control references in retrospective metacognitive commentary. Clin Neurophysiol. 2014 Jan;125(1):77-82. doi: 10.1016/j.clinph.2013.06.013. Epub 2013 Jul 3. — View Citation

Monte-Silva K, Kuo MF, Hessenthaler S, Fresnoza S, Liebetanz D, Paulus W, Nitsche MA. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 2013 May;6(3):424-32. doi: 10.1016/j.brs.2012.0 — View Citation

Motter JN, Pimontel MA, Rindskopf D, Devanand DP, Doraiswamy PM, Sneed JR. Computerized cognitive training and functional recovery in major depressive disorder: A meta-analysis. J Affect Disord. 2016 Jan 1;189:184-91. doi: 10.1016/j.jad.2015.09.022. Epub — View Citation

Park SH, Seo JH, Kim YH, Ko MH. Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport. 2014 Jan 22;25(2):122-6. doi: 10.1097/WNR.0000000000000080. — View Citation

Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004 Sep;256(3):183-94. Review. — View Citation

* Note: There are 17 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Visual episodic memory of word pairs learning test (Marshall et al., 2004) Number of correctly recalled word pairs Change from baseline (before treatment) to immediately after treatment (6 weeks) and 3 months after end of treatment
Primary Ray auditory verbal learning test (episodic memory) includes immediate recall, and after time (Carlesimo et al., 1996), Number of correctly recalled items Change from baseline (before treatment) to immediately after treatment (6 weeks) and 3 months after end of treatment
Secondary Logical Memory Test 1 (Craft et al., 2000; Wechsler, 2008) Number of correctly recalled items Change from baseline (before treatment) to immediately after treatment (6 weeks) and 3 months after end of treatment
Secondary Montreal questionnaire for Cognitive Assessment (MoCA, Nasreddine et al., 2005) Score at the MoCA test Change from baseline (before treatment) to immediately after treatment (6 weeks) and 3 months after end of treatment
See also
  Status Clinical Trial Phase
Completed NCT04101695 - Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects N/A
Completed NCT04504344 - Non-invasive Brain Stimulation to Improve Quadriceps Muscle Function After Anterior Cruciate Ligament Reconstruction Phase 1
Recruiting NCT06193278 - Individual Neuromodulation for PDS N/A
Recruiting NCT06148363 - Intervention Effect of High-Definition Transcranial Direct Current Stimulation (HD-tDCS) on Non-suicidal Self-injury (NSSI) N/A
Active, not recruiting NCT05293431 - Promote Brain Resilience for the Coronavirus (COVID-19) Pandemic N/A
Active, not recruiting NCT04159012 - NESBID: Neuro-Stimulation of the Brain in Depression N/A
Completed NCT04226417 - Effect of Home Based Transcranial Direct Current Stimulation (tDCS) With Exercise on Upper and Lower Limb Motor Functions in Chronic Stroke N/A
Active, not recruiting NCT02959502 - Home-Based CR and tDCS to Enhance Cognition in Persons With Mild Cognitive Impairment and Late Life Depression N/A
Not yet recruiting NCT05467566 - Transcranial Direct Current Stimulation Combined With Exercise in Low Back Pain N/A
Completed NCT03050385 - Cognitive Rehabilitation During Transcranial Direct Current Stimulation N/A
Completed NCT02287207 - Effects of Transcranial Direct Current Stimulation on Fine Motor Skills in Parkinson's Disease: a Pilot Study N/A
Recruiting NCT03635008 - Anodal Transcranial Direct Current Stimulation Over the Contralesional Hemisphere on Motor Recovery in Subacute Stroke Patients N/A
Completed NCT04117256 - Transcranial Versus Suboccipital Direct Current Stimulation N/A
Completed NCT04328545 - Transcranial Direct Current Stimulation Effect on Pain Threshold and Working Memory: Impact of Age and Protocol Type N/A
Completed NCT04697901 - Sustaining Aviator Performance During Extended Operational Flight N/A
Active, not recruiting NCT03655769 - fMRI Analysis of Aging and Awareness in Conditioning N/A
Completed NCT03680664 - Mindfulness-Based Stress Reduction (MBSR) and Transcranial Direct Current Stimulation (tDCS) N/A
Recruiting NCT04052399 - Improving Insulin Sensitivity by Non-invasive Brain Stimulation in Persons With Insulin Resistance N/A
Completed NCT06110936 - Effects of Transcutaneous Spinal Direct Current Stimulation on Mobility in Cases With Multiple Sclerosis N/A
Completed NCT06122155 - Effects of Posterior Parietal Cortex and Cerebellum Anodal tDCS on Ankle Tracking Visuomotor Adaptation N/A