Clinical Trials Logo

Clinical Trial Summary

Quadriceps muscle dysfunction persists for years after anterior cruciate ligament reconstruction (ACLR) and is related to poor self-reported outcomes, altered movement patterns and joint loading associated with post-traumatic knee osteoarthritis (OA), and higher risk of reinjury. Emerging evidence indicates that central drive (pathway from the brain to the muscle of interest, i.e corticospinal excitability) to the quadriceps muscle is reduced as early as 2 weeks after surgery and can persist for years after ACLR, meaning that current rehabilitation strategies may not be addressing potential maladaptive changes in central drive. Anodal tDCS is a neurostimulation technology that increases brain excitability (i.e. central drive) and has the potential to address alterations in central drive and quadriceps muscle performance. The purpose of this study is twofold: 1) to determine the effects of anodal tDCS on central drive and quadriceps muscle performance in patients after ACLR, and 2) determine the relationship between central drive and quadriceps muscle performance in patients after ACLR. Central drive will be defined by two measures: 1) active motor thresholds, and 2) slope of a stimulus response curve. Quadriceps muscle performance will be defined by two measures: 1) isometric quadriceps strength, and 2) rate of torque development (RTD). For purpose 1 the investigators hypothesize that measures of central drive and quadriceps muscle performance will increase with administration of active anodal tDCS compared to no change with sham tDCS. For purpose 2 the investigators hypothesize that both measures of central drive will be associated with both measures of quadriceps performance, with a stronger association between central drive and RTD. Following a cross-over design patients 3-6 months from ACLR will receive active and sham anodal tDCS at different sessions separated by 7-10 days while they ride a stationary bike for 20 minutes. Bike position and intensity will be standardized for all patients to maximize quadriceps activity. Findings from this study will expand our basic science knowledge on how tDCS effects different aspects of corticospinal excitability and quadriceps strength, and lead to subsequent studies to determine the effects of multiple sessions of tDCS on corticospinal excitability and quadriceps muscle performance in patients recovering from ACLR.


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT04504344
Study type Interventional
Source Arcadia University
Contact
Status Completed
Phase Phase 1
Start date September 15, 2020
Completion date July 31, 2023

See also
  Status Clinical Trial Phase
Completed NCT04101695 - Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects N/A
Recruiting NCT06148363 - Intervention Effect of High-Definition Transcranial Direct Current Stimulation (HD-tDCS) on Non-suicidal Self-injury (NSSI) N/A
Recruiting NCT06193278 - Individual Neuromodulation for PDS N/A
Active, not recruiting NCT05293431 - Promote Brain Resilience for the Coronavirus (COVID-19) Pandemic N/A
Recruiting NCT04997226 - Cognitive Enhancement in Healthy Elderly People N/A
Active, not recruiting NCT04159012 - NESBID: Neuro-Stimulation of the Brain in Depression N/A
Completed NCT04226417 - Effect of Home Based Transcranial Direct Current Stimulation (tDCS) With Exercise on Upper and Lower Limb Motor Functions in Chronic Stroke N/A
Active, not recruiting NCT02959502 - Home-Based CR and tDCS to Enhance Cognition in Persons With Mild Cognitive Impairment and Late Life Depression N/A
Not yet recruiting NCT05467566 - Transcranial Direct Current Stimulation Combined With Exercise in Low Back Pain N/A
Completed NCT03050385 - Cognitive Rehabilitation During Transcranial Direct Current Stimulation N/A
Completed NCT02287207 - Effects of Transcranial Direct Current Stimulation on Fine Motor Skills in Parkinson's Disease: a Pilot Study N/A
Recruiting NCT03635008 - Anodal Transcranial Direct Current Stimulation Over the Contralesional Hemisphere on Motor Recovery in Subacute Stroke Patients N/A
Completed NCT04117256 - Transcranial Versus Suboccipital Direct Current Stimulation N/A
Completed NCT04328545 - Transcranial Direct Current Stimulation Effect on Pain Threshold and Working Memory: Impact of Age and Protocol Type N/A
Completed NCT04697901 - Sustaining Aviator Performance During Extended Operational Flight N/A
Active, not recruiting NCT03655769 - fMRI Analysis of Aging and Awareness in Conditioning N/A
Completed NCT03680664 - Mindfulness-Based Stress Reduction (MBSR) and Transcranial Direct Current Stimulation (tDCS) N/A
Recruiting NCT04052399 - Improving Insulin Sensitivity by Non-invasive Brain Stimulation in Persons With Insulin Resistance N/A
Completed NCT06110936 - Effects of Transcutaneous Spinal Direct Current Stimulation on Mobility in Cases With Multiple Sclerosis N/A
Completed NCT06122155 - Effects of Posterior Parietal Cortex and Cerebellum Anodal tDCS on Ankle Tracking Visuomotor Adaptation N/A