Clinical Trials Logo

Clinical Trial Summary

The goal of this project is to strengthen residual corticospinal tract (CST) connections after partial injury using combined motor cortex and spinal cord stimulation to improve arm and hand function after spinal cord injury (SCI). To do this, the investigators will test the combination of transcranial magnetic stimulation (TMS) with transcutaneous spinal direct current stimulation (tsDCS) in individuals with chronic cervical SCI.


Clinical Trial Description

For people with cervical SCI, regaining hand function is their highest priority. Most SCIs are motor incomplete, and even when complete, there is often significant amounts of spared spinal cord white matter. The goal of this project is to strengthen residual corticospinal tract (CST) connections after partial injury using combined motor cortex and spinal cord stimulation to improve arm and hand function. The team's research in rats, which has been refined in over a decade of study, demonstrates that brain and spinal cord stimulation fully restores motor skills in rats after CST injury. Most significant for the population of people living with SCI, this approach is effective in the chronic phase of injury. Recently, the investigators translated this electrical stimulation protocol into one that can be rapidly translated into people using non-invasive techniques. In rats, combined electrical intermittent theta burst stimulation (iTBS) of motor cortex with transcutaneous spinal direct current stimulation (tsDCS) activates the cervical spinal cord. This protocol, which is administered only 30 minutes a day for 10 days, causes large-scale sprouting of CST connections and full recovery of forelimb function. Thus, by combining brain and spinal cord electrical stimulation in rodents with corticospinal system injury durable CST axonal sprouting, strengthening of CST connections, and recovery is achieved. In this proposal, the investigators intend to bring this promising therapeutic approach to humans with cervical SCI. The team will study people with chronic, motor incomplete, SCI to test the safety and feasibility of this approach. The investigators' approach is non-invasive and, if shown to be effective, can be rapidly integrated into current clinical practice to help restore hand function in people with chronic SCI. Each subject will undergo four stimulation sessions of 4 hours or less. Outcomes focus on safety and neurophysiological transmission. The first session is used to determine the target muscle, optimal scalp site for TMS stimulation, assess cervical tsDCS tolerability, and measure maximal contraction force of the fingers, wrist, and elbow. The second through fourth sessions will assess the acute tolerability and effects of tsDCS with different intensities and electrode configurations in a randomized order. Each session will test a different electrode configuration and will be divided into two stages. The first stage will randomly deliver three 5-minute blocks of tsDCS at different randomized intensities (100%, 66% and 0% (sham) of tolerated intensity, as determined in Session 1) and assess changes in corticospinal and spinal excitability in response to TMS and peripheral nerve stimulation (PNS) of the target muscle. The second stage will assess the acute effects of 20-minutes of tsDCS delivered at two thirds the maximal tolerability on TMS- and PNS-evoked responses and performance of a motor task. Safety and tolerability will be closely monitored at all times. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04727866
Study type Interventional
Source Bronx VA Medical Center
Contact
Status Completed
Phase N/A
Start date January 4, 2021
Completion date January 13, 2024

See also
  Status Clinical Trial Phase
Active, not recruiting NCT06321172 - Muscle and Bone Changes After 6 Months of FES Cycling N/A
Completed NCT03457714 - Guided Internet Delivered Cognitive-Behaviour Therapy for Persons With Spinal Cord Injury: A Feasibility Trial
Recruiting NCT05484557 - Prevention of Thromboembolism Using Apixaban vs Enoxaparin Following Spinal Cord Injury N/A
Suspended NCT05542238 - The Effect of Acute Exercise on Cardiac Autonomic, Cerebrovascular, and Cognitive Function in Spinal Cord Injury N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Not yet recruiting NCT05506657 - Early Intervention to Promote Return to Work for People With Spinal Cord Injury N/A
Recruiting NCT03680872 - Restoring Motor and Sensory Hand Function in Tetraplegia Using a Neural Bypass System N/A
Recruiting NCT04105114 - Transformation of Paralysis to Stepping Early Phase 1
Completed NCT04221373 - Exoskeletal-Assisted Walking in SCI Acute Inpatient Rehabilitation N/A
Completed NCT00116337 - Spinal Cord Stimulation to Restore Cough N/A
Completed NCT03898700 - Coaching for Caregivers of Children With Spinal Cord Injury N/A
Recruiting NCT04883463 - Neuromodulation to Improve Respiratory Function in Cervical Spinal Cord Injury N/A
Active, not recruiting NCT04881565 - Losing Balance to Prevent Falls After Spinal Cord Injury (RBT+FES) N/A
Completed NCT04864262 - Photovoice for Spinal Cord Injury to Prevent Falls N/A
Recruiting NCT04007380 - Psychosocial, Cognitive, and Behavioral Consequences of Sleep-disordered Breathing After SCI N/A
Active, not recruiting NCT04544761 - Resilience in Persons Following Spinal Cord Injury
Completed NCT03220451 - Use of Adhesive Elastic Taping for the Therapy of Medium/Severe Pressure Ulcers in Spinal Cord Injured Patients N/A
Terminated NCT03170557 - Randomized Comparative Trial for Persistent Pain in Spinal Cord Injury: Acupuncture vs Aspecific Needle Skin Stimulation N/A
Recruiting NCT04811235 - Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial N/A
Recruiting NCT04736849 - Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury N/A