Acute Respiratory Distress Syndrome Clinical Trial
— ALTERPRONEOfficial title:
ArtificiaL Increase in chesT Wall Elastance as an alteRnative to PRONE Positioning in Moderate-to-severe ARDS: a Physiological Study The ALTERPRONE Study
NCT number | NCT03719937 |
Other study ID # | 1505 |
Secondary ID | |
Status | Suspended |
Phase | N/A |
First received | |
Last updated | |
Start date | October 1, 2018 |
Est. completion date | April 1, 2023 |
Verified date | August 2022 |
Source | Catholic University of the Sacred Heart |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
During moderate to severe ARDS, sessions of prone positioning lead to lung and chest wall mechanics changes that modify regional ventilation, with a final redistribution of tidal volume and PEEP towards dependent lung regions: this limits ventilator-induced lung injury, increases oxygenation and convincingly improves clinical outcome. Physiological data indicate that the increase in chest wall elastance is crucial in determining the benefit by prone positioning on oxygenation. In some patients, however, prone positioning may not be feasible or safe due to particular comorbidities and/or technical issues. In the present pilot-feasibility study enrolling 15 subjects with moderate to severe ARDS in whom prone positioning is contraindicated or unfeasible, we aim at assessing whether and to what extent an artificial increase in chest wall elastance while the patient is in the supine position may yield a significant benefit to oxygenation. The increase in chest wall elastance will be achieved placing 100g/kg weight on the anterior chest wall of the patient while he/she is in the supine position: this approach previoulsy appeared safe and effective in case reports and small case series. Patient's position will be standardized (30 degrees head-up, semi seated position). This one-arm sequential study will evaluate the effects of the procedure on gas exchange, haemodynamics, lung and chest wall mechanics, alveolar recruitment (measured with the nitrogen washout-technique and multiple PV curves) and tidal volume and PEEP distribution (assessed with electrical impedance tomography).
Status | Suspended |
Enrollment | 15 |
Est. completion date | April 1, 2023 |
Est. primary completion date | April 1, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: 1. Patients with ARDS and moderate to severe oxygenation impairment (PaO2/FiO2=150 mmHg while receiving controlled mechanical ventilation with PEEP=5 cmH2O) will be the studied population. Acute respiratory failure within 1 week of a known clinical insult or new or worsening respiratory symptoms; - Bilateral infiltrates at the chest x-ray or CT scan, not fully explained by effusions, lobar/lung collapse, or nodules; - Respiratory failure not fully explained by cardiac failure or fluid overload; objective assessment required to exclude hydrostatic edema if no risk factor present. - PaO2/FiO2 ratio<150 mmHg after 30 mins - 1 hour of mechanical ventilation with PEEP=5 cmH2O(14). - Written informed consent. 2. Prone positioning deemed non-feasible by the attending clinician, or presence of at least one of the following absolute contraindications for prone positioning(5) - Serious facial trauma or facial surgery during the previous 15 days - Deep venous thrombosis treated for less than 2 days - Unstable spine, femur, or pelvic fractures - Pregnant women - Intracranial pressure >30 mm Hg or cerebral perfusion pressure <60 mm Exclusion Criteria: - Chest trauma - Cardiothoracic surgery in the last 4/6 weeks - Cardiac PM inserted the last 2 days - Haemodynamic instability (MAP < 65 mmHg despite vasoactive/inotrope support) - Chest tube with air leaks - Presence of intrinsic PEEP > 1 cmH2O - BMI < 18 - Height < 150 cm - More than 48 hours from endotracheal intubation to the time of randomization |
Country | Name | City | State |
---|---|---|---|
Italy | General ICU, A. Gemelli hospital | Rome |
Lead Sponsor | Collaborator |
---|---|
Catholic University of the Sacred Heart |
Italy,
Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress sy — View Citation
Blankman P, Hasan D, Erik G, Gommers D. Detection of 'best' positive end-expiratory pressure derived from electrical impedance tomography parameters during a decremental positive end-expiratory pressure trial. Crit Care. 2014 May 10;18(3):R95. doi: 10.118 — View Citation
Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, Slutsky AS, Pullenayegum E, Zhou Q, Cook D, Brochard L, Richard JC, Lamontagne F, Bhatnagar N, Stewart TE, Guyatt G. Higher vs lower positive end-expiratory pressure in patients with acute lung i — View Citation
Dellamonica J, Lerolle N, Sargentini C, Beduneau G, Di Marco F, Mercat A, Richard JC, Diehl JL, Mancebo J, Rouby JJ, Lu Q, Bernardin G, Brochard L. PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveola — View Citation
Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006 Apr 27;354(17):1775-86. — View Citation
Gattinoni L, Pelosi P, Vitale G, Pesenti A, D'Andrea L, Mascheroni D. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure. Anesthesiology. 1991 Jan;74(1):15-23. — View Citation
Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girar — View Citation
Laffey JG, Bellani G, Pham T, Fan E, Madotto F, Bajwa EK, Brochard L, Clarkson K, Esteban A, Gattinoni L, van Haren F, Heunks LM, Kurahashi K, Laake JH, Larsson A, McAuley DF, McNamee L, Nin N, Qiu H, Ranieri M, Rubenfeld GD, Thompson BT, Wrigge H, Slutsk — View Citation
Mauri T, Yoshida T, Bellani G, Goligher EC, Carteaux G, Rittayamai N, Mojoli F, Chiumello D, Piquilloud L, Grasso S, Jubran A, Laghi F, Magder S, Pesenti A, Loring S, Gattinoni L, Talmor D, Blanch L, Amato M, Chen L, Brochard L, Mancebo J; PLeUral pressur — View Citation
Mentzelopoulos SD, Roussos C, Zakynthinos SG. Prone position reduces lung stress and strain in severe acute respiratory distress syndrome. Eur Respir J. 2005 Mar;25(3):534-44. — View Citation
Muders T, Luepschen H, Zinserling J, Greschus S, Fimmers R, Guenther U, Buchwald M, Grigutsch D, Leonhardt S, Putensen C, Wrigge H. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury*. C — View Citation
Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guérin C, Prat G, Morange S, Roch A; ACURASYS Study Investigators. Neuromuscular blockers in early acute r — View Citation
Pelosi P, Brazzi L, Gattinoni L. Prone position in acute respiratory distress syndrome. Eur Respir J. 2002 Oct;20(4):1017-28. Review. — View Citation
Pelosi P, Cereda M, Foti G, Giacomini M, Pesenti A. Alterations of lung and chest wall mechanics in patients with acute lung injury: effects of positive end-expiratory pressure. Am J Respir Crit Care Med. 1995 Aug;152(2):531-7. — View Citation
Pelosi P, Tubiolo D, Mascheroni D, Vicardi P, Crotti S, Valenza F, Gattinoni L. Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury. Am J Respir Crit Care Med. 1998 Feb;157(2):387-93. — View Citation
Ranieri VM, Giuliani R, Fiore T, Dambrosio M, Milic-Emili J. Volume-pressure curve of the respiratory system predicts effects of PEEP in ARDS: "occlusion" versus "constant flow" technique. Am J Respir Crit Care Med. 1994 Jan;149(1):19-27. — View Citation
Riera J, Pérez P, Cortés J, Roca O, Masclans JR, Rello J. Effect of high-flow nasal cannula and body position on end-expiratory lung volume: a cohort study using electrical impedance tomography. Respir Care. 2013 Apr;58(4):589-96. doi: 10.4187/respcare.02 — View Citation
Samanta S, Samanta S, Soni KD. Supine chest compression: alternative to prone ventilation in acute respiratory distress syndrome. Am J Emerg Med. 2014 May;32(5):489.e5-6. doi: 10.1016/j.ajem.2013.11.014. Epub 2013 Nov 13. — View Citation
* Note: There are 18 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | oxygenation | PaO2/FiO2 ratio | 120 minutes after the intervention | |
Secondary | Alveolar recruitment | Changes in End expiratory lung impedance (EELI), measured with electrical impedance tomography
A ten-minute period EIT signals will be recorded and offline reviewed using a dedicated software. Image acquisition rate will be 30 Hz. Lungs will be divided into four regions (ventral, mid-ventral, mid-dorsal and dorsal): the % of impedance variation related to tidal volume and the % EELI in the four regions as compared to the absolute values will be calculated |
1 and 2 hours after the intervention | |
Secondary | tidal volume dsitribution | Changes in Tidal volume distribution in 4 area of the lungs (Ventral, mid ventral, mid-dorsal, dorsal)
A ten-minute period EIT signals will be recorded and offline reviewed using a dedicated software. Image acquisition rate will be 30 Hz. Lungs will be divided into four regions (ventral, mid-ventral, mid-dorsal and dorsal): the % of impedance variation related to tidal volume and the % EELI in the four regions as compared to the absolute values will be calculated |
1 and 2 hours after the intervention | |
Secondary | Lung stress | Measured at the end of an end-inspiratory occlusion, as: airway pressure - esophageal pressure + esophageal pressure at atmospheric pressure
Static and dynamic strain will be calculated according to the following formulas: Lung Stress= PplatAW-PplatESO-PEEPES,ZEEP Dynamic strain = VT/FRCPEEPset Static strain= Strain due to peep ([PEEPvolume-RecZEEP at PEEP/FRCPEEPset) Pressure-volume curves at PEEP0 AND set PEEP will be conducted to confirm the reliability of the previous calculations at the end of each of the study steps |
1 and 2 hours after the intervention | |
Secondary | Dynamic strain | Computed as the ratio of tidal volume to functional residual capacit, with the latter measured with the nitrogen washin-washout technique
Static and dynamic strain will be calculated according to the following formulas: Lung Stress= PplatAW-PplatESO-PEEPES,ZEEP Dynamic strain = VT/FRCPEEPset Static strain= Strain due to peep ([PEEPvolume-RecZEEP at PEEP/FRCPEEPset) Pressure-volume curves at PEEP0 AND set PEEP will be conducted to confirm the reliability of the previous calculations at the end of each of the study steps |
1 and 2 hours after the intervention | |
Secondary | Driving pressure | Respiratory system elastic pressure, measured as plateau pressure-PEEP | 1 and 2 hours after the intervention | |
Secondary | Transpulmonary Driving pressure | Lung elastic pressure, measured as transpulmonary plateau pressure- transpulmonary PEEP | 1 and 2 hours after the intervention | |
Secondary | Chest wall elastance | Elastance of abdomen/chest wall, measured as tidal change in Pes/tidal volume | 1 and 2 hours after the intervention |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04384445 -
Zofin (Organicell Flow) for Patients With COVID-19
|
Phase 1/Phase 2 | |
Recruiting |
NCT05535543 -
Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
|
||
Completed |
NCT04695392 -
Restore Resilience in Critically Ill Children
|
N/A | |
Terminated |
NCT04972318 -
Two Different Ventilatory Strategies in Acute Respiratory Distress Syndrome Due to Community-acquired Pneumonia
|
N/A | |
Completed |
NCT04534569 -
Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
|
||
Completed |
NCT04078984 -
Driving Pressure as a Predictor of Mechanical Ventilation Weaning Time on Post-ARDS Patients in Pressure Support Ventilation.
|
||
Completed |
NCT04451291 -
Study of Decidual Stromal Cells to Treat COVID-19 Respiratory Failure
|
N/A | |
Not yet recruiting |
NCT06254313 -
The Role of Cxcr4Hi neutrOPhils in InflueNza
|
||
Not yet recruiting |
NCT04798716 -
The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus Pneumonia Caused by COVID-19
|
Phase 1/Phase 2 | |
Withdrawn |
NCT04909879 -
Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome
|
Phase 2 | |
Terminated |
NCT02867228 -
Noninvasive Estimation of Work of Breathing
|
N/A | |
Not yet recruiting |
NCT02881385 -
Effects on Respiratory Patterns and Patient-ventilator Synchrony Using Pressure Support Ventilation
|
N/A | |
Completed |
NCT02545621 -
A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
|
||
Completed |
NCT02232841 -
Electrical Impedance Imaging of Patients on Mechanical Ventilation
|
N/A | |
Withdrawn |
NCT02253667 -
Palliative Use of High-flow Oxygen Nasal Cannula in End-of-life Lung Disease Patients
|
N/A | |
Completed |
NCT02889770 -
Dead Space Monitoring With Volumetric Capnography in ARDS Patients
|
N/A | |
Withdrawn |
NCT01927237 -
Pulmonary Vascular Effects of Respiratory Rate & Carbon Dioxide
|
N/A | |
Completed |
NCT01504893 -
Very Low Tidal Volume vs Conventional Ventilatory Strategy for One-lung Ventilation in Thoracic Anesthesia
|
N/A | |
Completed |
NCT02814994 -
Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients
|
N/A | |
Completed |
NCT01680783 -
Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure
|
N/A |