Clinical Trials Logo

Clinical Trial Summary

The project will contribute with new knowledge concerning how aspects of the physical work environment (lighting conditions) can be arranged to facilitate the workers' adaptation to night work. This is important given the reported adverse consequences of shift work for performance, safety, and health. The project involves a series of three experimental, laboratory based shift work simulation studies. The aim is to investigate how different lighting conditions (intensities and colour temperature), administered through light emitting diode (LED) based bright light integrated standard room lighting, affects adaptation to three consecutive simulated night shifts and re adaptation to a day oriented schedule on measures of alertness, cognitive performance, sleep and circadian rhythm. The proposed project examines the effects of interventions that can be applied in naturalistic settings and will be based on new laboratory infrastructure available at the laboratories situated in the Faculty of Psychology, University of Bergen.


Clinical Trial Description

Bright light has been suggested as a countermeasure to the negative impact of night work in terms of safety, performance and subsequent sleep. The effect depends on the timing of light (e.g, phase-response curve), duration of light exposure and the intensity of light, as well as the wavelengths that are emitted. Exposure to bright light (more intense than typical room lightning), at evening and night, has been effective in delaying the circadian rhythm to sufficiently adapt to night work both in simulated night work, and in field studies of workers. Blue light has significantly stronger phase shifting effects than other wavelengths of the visible spectrum. The effect of light on the circadian system is mediated by retinal photoresponsive cell population (intrinsically photoresponsive retinal ganglion cells; ipRGC) that contains the photopigment melanopsin, highly sensitive to blue light. These cells signal directly to the suprachiasmatic nuclei (SCN) of the hypothalamus, the circadian pacemaker. Bright light has also been reported to improve alertness and performance during night shifts.

To the best of the investigators knowledge, no shift work simulation study has made the full advance of LED-technology in terms of using light administered via standard room lighting on adaptation to night work. Today, new LED-technology represents an excellent opportunity to study this as roof mounted LED-sources integrated as standard indoor lightening can be programmed to provide a wide range of light intensities and colour temperatures. LED-sources have the advantage over standard light therapy that subjects can be exposed to the therapy via standard room lightening (not confined to a special therapy lamp) thereby allowing the workers to conduct work tasks as normal during light exposure.

Against this backdrop this project aims to investigate how different lighting conditions, administered through LED-based bright light integrated standard room lighting, affects adaptation to three consecutive simulated night shifts and re adaptation to a day oriented schedule on measures of alertness, cognitive performance, sleep and circadian rhythm. In addition, measures of mood, appetite, heart rate variability (HRV), pain sensitivity, moral reasoning, and inflammatory markers will be examined. The researchers also aim to investigate the effects of two extreme monochromatic light conditions (blue vs. red) based on integrated standard room lighting on the adaptation to one simulated night shift.

Study participants will work simulated night shifts (11:00 pm to 07:00 am) in a light laboratory where light parameters (intensity and colour temperature) can be manipulated via roof mounted LED-sources integrated as standard indoor lightening. Participants will be recruited among students at the University of Bergen, and a screening will be done to ensure healthy participants fit for the study. The included participants will take part in experiments with two bouts of three consecutive simulated night shifts (6 nights in total).

HRV will be measured throughout the night shift, and five times, approx. every 1.5 hour (11:30 pm, 01:00 am, 02:30 am, 04:00 am, 05:30 am), the subjects will be tested on a test battery of cognitive tests and will rate their subjective sleepiness. Sleep will be assessed by sleep diary and actigraphy 3 days prior to, during, and 3 days following the shifts. One day before the night shift and the day after the night shift period the circadian rhythm will be measured by saliva samples for estimation of dim light melatonin onset. Prior to-, during- and after the night shifts, participants will undergo a pain sensitivity test. Blood spot samples will be collected at the beginning and the end of each night shift for analysis of inflammatory markers (e.g. interleukins). ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03203538
Study type Interventional
Source University of Bergen
Contact
Status Completed
Phase N/A
Start date August 25, 2017
Completion date March 27, 2019

See also
  Status Clinical Trial Phase
Completed NCT04044495 - Sleep, Rhythms and Risk of Alzheimer's Disease N/A
Recruiting NCT06079853 - Nurse Suicide: Physiologic Sleep Health Promotion Trial N/A
Completed NCT05017974 - Research on Improving Sleep During Pregnancy N/A
Recruiting NCT05206747 - Ottawa Sunglasses at Night for Mania Study N/A
Enrolling by invitation NCT04253054 - Chinese Multi-provincial Cohort Study-Beijing Project
Completed NCT04513743 - Ultra Long-Term Sleep Monitoring Using UNEEG™ Medical 24/7 EEG™ SubQ N/A
Completed NCT03251274 - Bath Machine on Sleep Quality in Nursing Home N/A
Completed NCT04102345 - Lavender vs Zolpidem Sleep Quality During Diagnostic PSG Early Phase 1
Completed NCT03725943 - Comparison of Dreem to Clinical PSG for Sleep Monitoring in Healthy Adults N/A
Active, not recruiting NCT05062161 - Sleep Duration and Blood Pressure During Sleep N/A
Completed NCT04562181 - Consistency Evaluation of the qCON, qNOX Indices and Bispectral Index N/A
Completed NCT05102565 - A Dyadic Telehealth Program for Alzheimer's Patients/Caregivers N/A
Completed NCT05576844 - Ai Youmian (Love Better Sleep) for People Living With HIV N/A
Completed NCT04688099 - Synovial Fluid Sleep Study
Recruiting NCT04171245 - Prescribing Laughter for Sleep and Wellbeing in UAE University Students N/A
Completed NCT03758768 - The Effects of a Blue Monochromatic Light Intervention on Evening-type Individuals' Sleep and Circadian Rhythms N/A
Completed NCT03163498 - Evaluation of Sleep Pattern and Mood Profile in Hypertensive Patients
Completed NCT04093271 - Investigating the Efficacy of Rest-ZZZ Formula in Healthy Participants With Difficulty Falling Asleep or Staying a Sleep Phase 1
Completed NCT03673397 - The Acute Effect of Aerobic Exercise on Sleep in Patients With Depression N/A
Completed NCT04120363 - Trial of Testosterone Undecanoate for Optimizing Performance During Military Operations Phase 4