Clinical Trials Logo

Clinical Trial Summary

This study will evaluate if giving insulin that is administered in the nostrils (intranasal) is safe and tolerable for people with multiple sclerosis (MS). It is also being done to evaluate if intranasal insulin improves cognitive function in people with MS and to evaluate how it might be working.


Clinical Trial Description

Cognitive impairment is common in and devastating to people with MS. MS is a common, chronic, central nervous system (CNS) disease characterized by inflammation, demyelination, and neurodegeneration. One of the most devastating symptoms of this disease is impaired cognitive function, which is common and present in over 60% of individuals with MS. MS-related cognitive impairment is associated with lowered quality of life and reduced functional capacity, including loss of employment, impaired social relationships, compromised driving safety, and poor adherence to treatment. Impaired cognitive functioning has been observed early in the disease, sometimes even before diagnosis, and cognitive function has been shown to decline longitudinally, both over the short- and long-term. Several cognitive domains are impacted in people with MS, including attention, memory, executive functioning, and especially processing speed. To date, multiple pharmacologic interventions have been assessed with disappointing results. There was no significant difference between treatment and placebo for cognition in randomized control trials of donepezil, aminopyridines, gingko biloba, and memantine. Psychostimulants demonstrated some efficacy, but only in secondary outcome measures. Behavioral interventions show promise but are understudied. Furthermore, cognitive rehabilitation is often time consuming, costly, and not universally available. Hence, there is an urgent need to identify or develop novel therapies that can help improve cognitive function in MS. Intranasal insulin is extremely safe and tolerable in other populations, allowing for concentrated delivery to the nervous system. An intranasal delivery system provides a non-invasive way to bypass the blood-brain barrier and allow rapid delivery of a medication to the CNS via the olfactory and trigeminal perivascular channels.The main advantage of the delivery system is reducing systemic side effects via limiting a medication's exposure to peripheral organs and tissues. Insulin administration has been shown to improve memory and learning in healthy people and in those with neurodegenerative diseases. Intranasal insulin has been shown to have neuroprotective and restorative effects in several human clinical trials. Overall, findings suggest that intranasal insulin not only affects cognitive function acutely, but that over time, there may be associated structural changes that lead to a more permanent treatment benefit. Cognitive dysfunction is very common in MS and can be devastating, therefore a treatment intervention (i.e., intranasal insulin) can help both acutely and longitudinally. The primary aim of this study is to assess the safety and tolerability of intranasal insulin in people with MS. The secondary aim is to evaluate if intranasal insulin improves learning and memory in people with MS. The third aim is to evaluate the impact of intranasal insulin on measures of oxidative stress, axonal injury, cellular stress, and energy metabolism in MS. ;


Study Design


Related Conditions & MeSH terms

  • Multiple Sclerosis
  • Multiple Sclerosis, Chronic Progressive
  • Multiple Sclerosis, Primary Progressive
  • Multiple Sclerosis, Relapsing-Remitting
  • Multiple Sclerosis, Secondary Progressive
  • Sclerosis

NCT number NCT02988401
Study type Interventional
Source Johns Hopkins University
Contact
Status Completed
Phase Phase 1/Phase 2
Start date December 1, 2017
Completion date December 17, 2021

See also
  Status Clinical Trial Phase
Completed NCT02861014 - A Study of Ocrelizumab in Participants With Relapsing Remitting Multiple Sclerosis (RRMS) Who Have Had a Suboptimal Response to an Adequate Course of Disease-Modifying Treatment (DMT) Phase 3
Terminated NCT01435993 - Multiple Doses of Anti-NOGO A in Relapsing Forms of Multiple Sclerosis Phase 1
Recruiting NCT05964829 - Impact of the Cionic Neural Sleeve on Mobility in Multiple Sclerosis N/A
Completed NCT03653585 - Cortical Lesions in Patients With Multiple Sclerosis
Completed NCT02410200 - Study of the Effect of BG00012 on MRI Lesions and Pharmacokinetics in Pediatric Subjects With RRMS Phase 2
Completed NCT03975413 - Fecal Microbiota Transplantation (FMT) in Multiple Sclerosis
Completed NCT05080270 - Feasibility Study of Tolerogenic Fibroblasts in Patients With Refractory Multiple Sclerosis Early Phase 1
Completed NCT01116427 - A Cooperative Clinical Study of Abatacept in Multiple Sclerosis Phase 2
Completed NCT01108887 - An Observational Study for the Assessment of Adherence, Effectiveness and Convenience of Rebif® Treatment in Relapsing Multiple Sclerosis Patients Using RebiSmartâ„¢. N/A
Completed NCT01141751 - An Observational Study Comparing Multiple Sclerosis International Quality of Life Questionnaire (MusiQoL) and Multiple Sclerosis Quality of Life-54 Instrument (MSQOL-54) in Relapsing Multiple Sclerosis (RMS) Patients on Long-term Rebif® Therapy N/A
Completed NCT00097331 - Three Months Treatment With SB683699 In Patients With Relapsing Multiple Sclerosis Phase 2
Completed NCT01909492 - Measurement of Relaxin Peptide in Multiple Sclerosis (MS)
Completed NCT04121221 - A Study to Asses Efficacy, Safety and Tolerability of Monthly Long-acting IM Injection of GA Depot in Subjects With RMS Phase 3
Withdrawn NCT04880577 - Tenofovir Alafenamide for Treatment of Symptoms and Neuroprotection in Relapsing Remitting Multiple Sclerosis Phase 2
Not yet recruiting NCT05290688 - Cellular microRNA Signatures in Multiple Sclerosis N/A
Completed NCT04528121 - Effect of CoDuSe Balance Training and Step Square Exercises on Risk of Fall in Multiple Sclerosis N/A
Recruiting NCT04002934 - Bazedoxifene Acetate as a Remyelinating Agent in Multiple Sclerosis Phase 2
Recruiting NCT05019248 - Immune Response to Seasonal Influenza Vaccination in Multiple Sclerosis Patients Receiving Cladribine
Completed NCT04580381 - Real World Effectiveness of Natalizumab Extended Interval Dosing in a French Cohort
Completed NCT00071838 - Zenapax (Daclizumab) to Treat Relapsing Remitting Multiple Sclerosis Phase 2