Clinical Trials Logo

Clinical Trial Summary

This study will evaluate the safety and tolerability of synthetic T3, liothyronine. It will establish if there are changes in MS symptoms and if there is a positive effect on markers of neuronal health.


Clinical Trial Description

Multiple sclerosis (MS) is a chronic, immune-mediated disease of the central nervous system (CNS) that is characterized by inflammation, demyelination, and neurodegeneration. It remains the most common non-traumatic cause of neurologic disability in young adults and presents in most patients as relapsing-remitting disease. Relapses, caused by inflammatory demyelination, can result in a significant amount of neurological disability and reduced health-related quality of life, and having frequent early relapses is associated with increased risk of longer-term disability. Clinical recovery from early relapses is incomplete in approximately half of patients with MS. The mechanisms underlying relapse recovery are not completely understood.

Remyelination of acutely denuded axons is one mechanism by which relapse recovery may occur. Remyelination is suspected to occur via newly differentiated oligodendrocytes, which are derived from oligodendrocyte precursor cells (OPCs) in the CNS. However, despite the presence of this innate repair mechanism, many patients go on to develop progressive functional disability. This may be due to a failure of remyelination or because of progressive axonal injury. Chronic demyelinating lesions are surrounded by OPCs and premyelinating oligodendrocytes, which suggest that failed remyelination does occur and could be partially due to incomplete oligodendrocyte differentiation. Additionally, recent studies have highlighted the importance of mitochondrial dysfunction, perhaps related to oxidative stress or increased energy demands, in mediating MS disease progression. Mitochondrial dysfunction may drive axonal degeneration with resultant neurodegeneration and progressive neurological decline (progressive MS). While numerous immune modulating therapies exist, currently, there is an urgent need for novel therapies that have neuroreparative and neuroprotective properties.

Thyroid hormones may play a direct role in remyelination and repair in the adult CNS by promoting maturation of oligodendrocytes. Further, thyroid hormones have been shown to reduce oxidative stress and thus may have the capacity to prevent mitochondrial dysfunction as well. Since tri-iodothyronine (T3) is believed to mediate the most important thyroid hormone actions, liothyronine (synthetic form of T3) has the potential to induce reparative mechanisms and limit secondary neurodegeneration in MS. In mice, T3 administration has shown to help facilitate recovery from cuprizone-induced demyelination. In this study, the investigators propose to perform a phase 1 study in patients with MS to establish a tolerable dose of liothyronine, evaluate the safety of this medication, determine whether it impacts function, and evaluate if it is associated with changes in neurotrophic and/or inflammatory biomarkers in the cerebrospinal fluid (CSF). ;


Study Design


Related Conditions & MeSH terms

  • Multiple Sclerosis
  • Multiple Sclerosis, Chronic Progressive
  • Multiple Sclerosis, Primary Progressive
  • Multiple Sclerosis, Relapsing-Remitting
  • Multiple Sclerosis, Secondary Progressive
  • Sclerosis

NCT number NCT02506751
Study type Interventional
Source Johns Hopkins University
Contact
Status Completed
Phase Phase 1
Start date July 2015
Completion date September 18, 2017

See also
  Status Clinical Trial Phase
Completed NCT02861014 - A Study of Ocrelizumab in Participants With Relapsing Remitting Multiple Sclerosis (RRMS) Who Have Had a Suboptimal Response to an Adequate Course of Disease-Modifying Treatment (DMT) Phase 3
Terminated NCT01435993 - Multiple Doses of Anti-NOGO A in Relapsing Forms of Multiple Sclerosis Phase 1
Recruiting NCT05964829 - Impact of the Cionic Neural Sleeve on Mobility in Multiple Sclerosis N/A
Completed NCT03653585 - Cortical Lesions in Patients With Multiple Sclerosis
Completed NCT02410200 - Study of the Effect of BG00012 on MRI Lesions and Pharmacokinetics in Pediatric Subjects With RRMS Phase 2
Completed NCT03975413 - Fecal Microbiota Transplantation (FMT) in Multiple Sclerosis
Completed NCT05080270 - Feasibility Study of Tolerogenic Fibroblasts in Patients With Refractory Multiple Sclerosis Early Phase 1
Completed NCT01116427 - A Cooperative Clinical Study of Abatacept in Multiple Sclerosis Phase 2
Completed NCT01108887 - An Observational Study for the Assessment of Adherence, Effectiveness and Convenience of Rebif® Treatment in Relapsing Multiple Sclerosis Patients Using RebiSmartâ„¢. N/A
Completed NCT01141751 - An Observational Study Comparing Multiple Sclerosis International Quality of Life Questionnaire (MusiQoL) and Multiple Sclerosis Quality of Life-54 Instrument (MSQOL-54) in Relapsing Multiple Sclerosis (RMS) Patients on Long-term Rebif® Therapy N/A
Completed NCT00097331 - Three Months Treatment With SB683699 In Patients With Relapsing Multiple Sclerosis Phase 2
Completed NCT01909492 - Measurement of Relaxin Peptide in Multiple Sclerosis (MS)
Completed NCT04121221 - A Study to Asses Efficacy, Safety and Tolerability of Monthly Long-acting IM Injection of GA Depot in Subjects With RMS Phase 3
Withdrawn NCT04880577 - Tenofovir Alafenamide for Treatment of Symptoms and Neuroprotection in Relapsing Remitting Multiple Sclerosis Phase 2
Not yet recruiting NCT05290688 - Cellular microRNA Signatures in Multiple Sclerosis N/A
Completed NCT04528121 - Effect of CoDuSe Balance Training and Step Square Exercises on Risk of Fall in Multiple Sclerosis N/A
Recruiting NCT04002934 - Bazedoxifene Acetate as a Remyelinating Agent in Multiple Sclerosis Phase 2
Recruiting NCT05019248 - Immune Response to Seasonal Influenza Vaccination in Multiple Sclerosis Patients Receiving Cladribine
Completed NCT04580381 - Real World Effectiveness of Natalizumab Extended Interval Dosing in a French Cohort
Completed NCT00071838 - Zenapax (Daclizumab) to Treat Relapsing Remitting Multiple Sclerosis Phase 2