Acute Respiratory Distress Syndrome Clinical Trial
Official title:
Comparison of Cardio-respiratory Variables Between Low-frequency High Frequency Oscillation With/Without Tracheal Gas Insufflation and High-frequency High-frequency Oscillation in Severe ARDS.
Verified date | August 2017 |
Source | University of Athens |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Recent data from large trials of high-frequency high frequency oscillation (HFO) without a cuff leak vs, lung-protective conventional ventialtion (CMV) failed to show any HFO-related benefit with respect to outcome. A possible explanation is that HFO increases the probability of right ventricular dysfunction due to the combination of high mean airway pressures (mPaws) and hypercapnia. In contrast, available preliminary data on low-frequency HFO-tracheal gas insufflation (TGI) with cuff leak vs. CMV are suggestive of an HFO-TGI related benefit. Low-frequency HFO-TGI with a cuff leak is associated with relatively low mean tracheal pressures and adequate control of PaCO2. Thus, the investigators intend to test the hypothesis that low frequency HFO +/- TGI with a cuff leak is associated with better right ventricular function relative to high-frequency HFO without a cuff leak.
Status | Completed |
Enrollment | 17 |
Est. completion date | October 2016 |
Est. primary completion date | October 2016 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 75 Years |
Eligibility |
Inclusion Criteria: Acute Respiratory Distress Syndrome (ARDS) according to the Berlin Definition Onset of ARDS within the 72 hours preceding study enrollment PaO2/FiO2 of less than 150 mmHg while ventilated with a positive end-expiratory pressure of at least 10 cmH2O Body weight of more than 40 Kg Age 18-75 years Exclusion Criteria: Severe air leak (more than one chest tubes per hemithorax with persistent air leak for more than 72 hours) Systolic blood pressure lower than 90 mmHg, despite maximum support with fluids and vasopressor drugs Significant heart disease Severe chronic obstructive pulmonary disease or asthma Intracranial hypertension Chronic interstitial lung disease with bilateral lung infiltrates Lung biopsy or incision during the current admission Previous lung transplantation or bone marrow transplantation Pregnancy |
Country | Name | City | State |
---|---|---|---|
Greece | Evaggelismos General Hospital | Athens | Attica |
Lead Sponsor | Collaborator |
---|---|
University of Athens |
Greece,
Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998 Feb 5;338(6):347-54. — View Citation
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012 Jun 20;307(23):2526-33. doi: 10.1001/jama.2012.5669. — View Citation
Bouferrache K, Vieillard-Baron A. Acute respiratory distress syndrome, mechanical ventilation, and right ventricular function. Curr Opin Crit Care. 2011 Feb;17(1):30-5. doi: 10.1097/MCC.0b013e328342722b. Review. — View Citation
Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, Slutsky AS, Pullenayegum E, Zhou Q, Cook D, Brochard L, Richard JC, Lamontagne F, Bhatnagar N, Stewart TE, Guyatt G. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010 Mar 3;303(9):865-73. doi: 10.1001/jama.2010.218. Review. — View Citation
Derdak S, Mehta S, Stewart TE, Smith T, Rogers M, Buchman TG, Carlin B, Lowson S, Granton J; Multicenter Oscillatory Ventilation For Acute Respiratory Distress Syndrome Trial (MOAT) Study Investigators. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med. 2002 Sep 15;166(6):801-8. — View Citation
Derdak S. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adult patients. Crit Care Med. 2003 Apr;31(4 Suppl):S317-23. Review. — View Citation
Ferguson ND, Chiche JD, Kacmarek RM, Hallett DC, Mehta S, Findlay GP, Granton JT, Slutsky AS, Stewart TE. Combining high-frequency oscillatory ventilation and recruitment maneuvers in adults with early acute respiratory distress syndrome: the Treatment with Oscillation and an Open Lung Strategy (TOOLS) Trial pilot study. Crit Care Med. 2005 Mar;33(3):479-86. — View Citation
Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, Meade MO; OSCILLATE Trial Investigators; Canadian Critical Care Trials Group. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013 Feb 28;368(9):795-805. doi: 10.1056/NEJMoa1215554. Epub 2013 Jan 22. — View Citation
Fort P, Farmer C, Westerman J, Johannigman J, Beninati W, Dolan S, Derdak S. High-frequency oscillatory ventilation for adult respiratory distress syndrome--a pilot study. Crit Care Med. 1997 Jun;25(6):937-47. — View Citation
Guervilly C, Forel JM, Hraiech S, Demory D, Allardet-Servent J, Adda M, Barreau-Baumstark K, Castanier M, Papazian L, Roch A. Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med. 2012 May;40(5):1539-45. doi: 10.1097/CCM.0b013e3182451b4a. — View Citation
Guervilly C, Roch A, Papazian L. High-frequency oscillation for ARDS. N Engl J Med. 2013 Jun 6;368(23):2233. doi: 10.1056/NEJMc1304344#SA5. — View Citation
Mehta S, Lapinsky SE, Hallett DC, Merker D, Groll RJ, Cooper AB, MacDonald RJ, Stewart TE. Prospective trial of high-frequency oscillation in adults with acute respiratory distress syndrome. Crit Care Med. 2001 Jul;29(7):1360-9. — View Citation
Mekontso Dessap A, Charron C, Devaquet J, Aboab J, Jardin F, Brochard L, Vieillard-Baron A. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med. 2009 Nov;35(11):1850-8. doi: 10.1007/s00134-009-1569-2. Epub 2009 Aug 4. — View Citation
Mentzelopoulos SD, Malachias S, Kokkoris S, Roussos C, Zakynthinos SG. Comparison of high-frequency oscillation and tracheal gas insufflation versus standard high-frequency oscillation at two levels of tracheal pressure. Intensive Care Med. 2010 May;36(5):810-6. doi: 10.1007/s00134-010-1822-8. Epub 2010 Mar 16. — View Citation
Mentzelopoulos SD, Malachias S, Zintzaras E, Kokkoris S, Zakynthinos E, Makris D, Magira E, Markaki V, Roussos C, Zakynthinos SG. Intermittent recruitment with high-frequency oscillation/tracheal gas insufflation in acute respiratory distress syndrome. Eur Respir J. 2012 Mar;39(3):635-47. doi: 10.1183/09031936.00158810. Epub 2011 Sep 1. — View Citation
Mentzelopoulos SD, Roussos C, Koutsoukou A, Sourlas S, Malachias S, Lachana A, Zakynthinos SG. Acute effects of combined high-frequency oscillation and tracheal gas insufflation in severe acute respiratory distress syndrome. Crit Care Med. 2007 Jun;35(6):1500-8. — View Citation
Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999 Jul 7;282(1):54-61. — View Citation
Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF. An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol. 1985 Apr;5(4):918-27. — View Citation
Vieillard-Baron A, Price LC, Matthay MA. Acute cor pulmonale in ARDS. Intensive Care Med. 2013 Oct;39(10):1836-8. doi: 10.1007/s00134-013-3045-2. Epub 2013 Aug 2. — View Citation
Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006 May;34(5):1311-8. — View Citation
Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH; OSCAR Study Group. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013 Feb 28;368(9):806-13. doi: 10.1056/NEJMoa1215716. Epub 2013 Jan 22. — View Citation
* Note: There are 21 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Other | Occurrence of hypoxemia during the early and intermediate phase of ARDS | Within days 1-10 after study enrollment | ||
Other | Occurrence of in-hospital death and underlying cause(s) | Within days 1-60 after study enrollment | ||
Primary | Right ventricular diastolic area, left ventricular diastolic area as determined by transesophageal echocardiography during the application of the tested ventilatory strategies. | Within 6-7 hours after study enrollment | ||
Primary | Eccentricity index as determined by transesophageal echocardiography during the application of the tested ventilatory strategies | Within 6-7 hours after study enrollment | ||
Secondary | PaO2, PaCO2 and arterial pH during the application of the tested ventilatory strategies | Within 6-7 hours after study enrollment | ||
Secondary | Mean arterial pressure during the application of the tested ventilatory strategies | Within 6-7 hours after study enrollment | ||
Secondary | Cardiac index during the application of the tested ventilatory strategies | Within 6-7 hours after study enrollment | ||
Secondary | Static Compliance of the Respiratory System before and after the application of the tested HFO strategies | Within 6-7 hours after study enrollment |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04384445 -
Zofin (Organicell Flow) for Patients With COVID-19
|
Phase 1/Phase 2 | |
Recruiting |
NCT05535543 -
Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
|
||
Completed |
NCT04695392 -
Restore Resilience in Critically Ill Children
|
N/A | |
Terminated |
NCT04972318 -
Two Different Ventilatory Strategies in Acute Respiratory Distress Syndrome Due to Community-acquired Pneumonia
|
N/A | |
Completed |
NCT04534569 -
Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
|
||
Completed |
NCT04078984 -
Driving Pressure as a Predictor of Mechanical Ventilation Weaning Time on Post-ARDS Patients in Pressure Support Ventilation.
|
||
Completed |
NCT04451291 -
Study of Decidual Stromal Cells to Treat COVID-19 Respiratory Failure
|
N/A | |
Not yet recruiting |
NCT06254313 -
The Role of Cxcr4Hi neutrOPhils in InflueNza
|
||
Not yet recruiting |
NCT04798716 -
The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus Pneumonia Caused by COVID-19
|
Phase 1/Phase 2 | |
Withdrawn |
NCT04909879 -
Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome
|
Phase 2 | |
Not yet recruiting |
NCT02881385 -
Effects on Respiratory Patterns and Patient-ventilator Synchrony Using Pressure Support Ventilation
|
N/A | |
Terminated |
NCT02867228 -
Noninvasive Estimation of Work of Breathing
|
N/A | |
Completed |
NCT02545621 -
A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
|
||
Withdrawn |
NCT02253667 -
Palliative Use of High-flow Oxygen Nasal Cannula in End-of-life Lung Disease Patients
|
N/A | |
Completed |
NCT02232841 -
Electrical Impedance Imaging of Patients on Mechanical Ventilation
|
N/A | |
Completed |
NCT01504893 -
Very Low Tidal Volume vs Conventional Ventilatory Strategy for One-lung Ventilation in Thoracic Anesthesia
|
N/A | |
Completed |
NCT02889770 -
Dead Space Monitoring With Volumetric Capnography in ARDS Patients
|
N/A | |
Withdrawn |
NCT01927237 -
Pulmonary Vascular Effects of Respiratory Rate & Carbon Dioxide
|
N/A | |
Completed |
NCT02814994 -
Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients
|
N/A | |
Completed |
NCT01680783 -
Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure
|
N/A |