Clinical Trials Logo

Clinical Trial Summary

The purpose of this telemedicine 24-person open-label study is to evaluate the safety and usability of a proprietary wearable microcurrent electroceutical (a device that delivers micro-ampere electronic pulses) made by Healables, Ltd. to promote healing of chronic mild to moderate knee osteoarthritis as shown by decreased disability and relief of pain. In this study, subjects treat themselves at home once/day for an hour using a smart phone to activate the device worn on an e-textile sports knee sleeve. Microcurrent signals are transmitted from a device thru built in conductive pathways to strategic electrodes placed above and below the knee. A proprietary App both activates therapeutic protocols to transmit microcurrent signals as well as allows user-generated recording of the status of knee pain & function prior to and following each treatment. These records are then transmitted to health professionals using software compliant with human use data transmission regulations including subject anonymity. The rationale that the device would be effective is supported by microcurrent treatment for osteoarthritis at several US clinics including the prestigious Cleveland Clinic as well as by data of published randomized controlled clinical trials. One reason that more persons do not avail themselves of microcurrent therapy is that treatment usually requires several trips to a clinic often requiring considerable travel by a patient who may be in considerable pain. The health provider typically administers therapy in a clinic using electrodes with a desktop sized instrument. Our miniaturization of a microcurrent device and its use with wearable e-textiles such as a knee compression sleeve is a distinct advantage that enables regular use of effective therapy in home-based self-treatment to provide pain relief and improved knee function. Microcurrent electrotherapy represents a significant improvement in pain control and healing since it employs current in the microampere range, 1000 times less than that of Transcutaneous Electrical Nerve Stimulator (TENS) devices that transmit millicurrent electrical signals. This study is designed to demonstrate use of a wearable microcurrent electroceutical at home for subjects to self-treat at their leisure in a comfortable environment that facilitates healing. Moreover, data communication via a smart phone App to health providers enables digital telemedicine for rapid collation and interpretation of relevant data.


Clinical Trial Description

INTRODUCTION Definitions: an electroceutical, compared to a pharmaceutical, is a device that provides treatment by delivering potentially therapeutic electrical pulses; a microcurrent electroceutical delivers electrical pulses in the micro-ampere range and is distinguished from devices that deliver millicurrent which are electrical pulses in the milliampere range, 1000-fold greater than the micro ampere range. Electrical microcurrent therapy represents a significant improvement in rapid pain control and acceleration of healing since it not only avoids the side effects of drugs including opioids and NSAIDs, but is also a superior electroceutical modality since it uses 1000-fold less electric current than that of Transcutaneous Electrical Nerve Stimulation (TENS), which requires application of current in the millicurrent range and can itself be painful and damaging to nerve tissues. Electrotherapy, especially microcurrent electrical therapy, has been used to treat a variety of clinical conditions and is routinely used at pain clinics in the USA, most notable among them, the Cleveland Clinic, consistently rated among the top 3 medical centers in the USA. Microcurrent electro-therapy may be the best treatment for many pain-related disorders, since it not only provides fast relief of symptoms and promotes quick healing but also it has significantly fewer adverse side effects than many analgesic drugs. Indeed, this Cleveland Clinic website lists multiple diseases and disorders amenable to microcurrent therapy to ameliorate pain as do numerous published studies. Unfortunately, such microcurrent therapy is traditionally administered using a large desktop instrument through electrodes positioned by a health practitioner so that current can flow between the electrodes through the affected area of pain. While many practitioners in the USA are competent to administer such microcurrent therapy in both small and large clinical settings, treatment often requires significant travel by the patient who may be in considerable pain. Hence, patients frequently forego microcurrent therapy to avoid multiple trips to the health care provider at a clinic which may be quite distant. Microcurrent Electroceutical: Healables Ltd. has determined that microcurrent therapy can be designed as a wearable medical device for use at home, at work or when travelling. This functional innovation provides a solution to provide widespread availability of microcurrent therapy. Healables has miniaturized a device that can deliver microcurrent electrotherapy and has devised a way to dock it to wearable e-textiles such sleeves, socks or body shirts with built in electrode paths to deliver microcurrent signals to the affected areas. Powered by an smart phone App (provided), the subject can wear the Healables device at home, work or in transit to provide timely and, if warranted, frequent microcurrent therapy at his/her leisure. Moreover, the App allows the subject to remotely communicate with health providers by digital health telecommunication to report and document daily progress. The purpose of this clinical trial at the Edith Wolfson Medical Center (WMC) is to demonstrate the safety, tolerability and usability of a Healables electroceutical device in subjects with mild to moderate osteoarthritis pain and/or dysfunction to promote healing of chronic mild to moderate knee osteoarthritis as shown by relief of pain and decreased disability. Microcurrent Putative Mechanisms of Action: Microcurrent electrical fields have been shown to stimulate cellular physiology and growth. In a preclinical study, microcurrent electric fields increased adenosine triphosphate (ATP) generation close to 500% whereas higher currents actually decreased the results. This study also demonstrated that microcurrent enhances amino acid transport and protein synthesis. In a clinical study, fibromyalgia pain was successfully treated with microcurrent therapy and pain improvement scores were accompanied by substantial reduction in serum inflammatory cytokines Interleukin-1 (IL-1), Interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) levels as well as release of neuropeptide substance P and increases in serum Beta-endorphin and cortisol. This correlation indicated not only contributory treatment mechanisms effected by microcurrent therapy but also suggested that that such treatment can be objectively measured by observing changes in cytokines associated with pain and inflammation. Another suggested mechanism is based on the natural anti-oxidant ability of microcurrent to deliver electrons to tissues and saturate free radicals with required electrons. Such anti-oxidant activity is thought to repair local tissue damage that can be caused by a variety of chronic inflammatory illnesses including diabetes. Study Design and Description This is a non-blinded, open label study. Subjects that have signed informed consent, have met all inclusion and none of the exclusion criteria will be enrolled in the study and treated. Each subject will be given an electroceutical device and a wearable knee sleeve that docks onto with the device and that shall be worn on the subject's leg with mild to moderate knee osteoarthritis. The subject is also provided with a smart phone phone (iPhone) with a proprietary App to run the device and data reporting software. Subjects instructed by staff regarding device and App function and method of operation. Each treatment will comprise a self-treatment session at home of electroceutical microcurrent treatment for 60 +/- 20 minutes per day for 5 days per week for four consecutive weeks. Each treatment session will accompanied by use of the App to complete the 11-point Wong-Baker Visual Analog Scale (VAS) for knee pain prior to and following each treatment. The subject will also use the App once per week, every week of active treatment during the 1st 4 weeks of the study to score the 5-point, 12 question Knee Injury and Osteoarthritis Outcome Score (KOOS-12) for knee pain and dysfunction. In addition, for a 4-week follow up period after the 4 week treatment period, subjects will use the VAS and KOOS-12 weekly to assess residual effects of the treatments received during the 4 weeks of active treatment. In addition to the periodic questionnaires completed by the subject using the App, the International Knee Documentation Committee (IKDC) questionnaire will be administered at the Wolfson Medical Center (WMC) osteoarthritis clinic at baseline and at weeks 2, 4 and 8. In this manner assessment will be made during active treatment, at the end of 4 weeks treatment and 4 weeks after the end of treatment to assess any residual effects of treatment after treatment has ended. The IKDC will be the primary goal to assess the effect of treatment on the level of pain and functionality of the subject's osteoarthritic knee. Clinical Data Management Workflow Clinical data will be entered digitally from three sources. In the clinic the health practitioners will enter information into a tablet or other computer device that will transmit data to a Flaskdata backend. Such data will include the IKDC form and all info of the eCRF (electronic case report form). Another sources of data include data directly transmitted to Flaskdata from the device including, for example, measures of impedance, specific protocols used as well as times and lengths of use. A third component of data will be generated by subject responses to program queries and transmitted to Flaskdata via the App including questions regarding hydration and the Wong/Baker VAS pain levels and the 12-question KOOS-12 questionnaires described above. All data from both the App as well as from the WMC clinic will be referred electronically to the health portals of Flaskdata.io to be securely and privately kept with de-identification according to the prerequisites of HIPPA and Good Clinical Practice (GCP). Data will be available to the WMC health professionals to monitor the subject's progress and use of the device and the App. Treatment and reporting data from the App completed by the subject and from the e-CRFs (Electronic Case Report Forms) completed by WMC health providers also will be transmitted electronically to a database via Flaskdata.io for subsequent analysis in a de-identified and HIPPA compliant manner. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04938271
Study type Interventional
Source Healables Ltd.
Contact
Status Enrolling by invitation
Phase N/A
Start date November 22, 2021
Completion date June 2022

See also
  Status Clinical Trial Phase
Recruiting NCT03895489 - Effectiveness of the Journey Total Knee Arthroplasty Versus Two Standard of Care Total Knee Arthroplasty Prostheses N/A
Completed NCT03660943 - A Clinical Study to Test Efficacy and Safety of Repeat Doses of CNTX-4975-05 in Patients With Osteoarthritis Knee Pain Phase 3
Completed NCT04531969 - Comparison of Outpatient and Inpatient Spa Therapy N/A
Completed NCT02848027 - Correlating the Osteoarthritic Knee Microenvironment to Clinical Outcome After Treatment With Regenexx®SD Treatment Phase 3
Completed NCT05160246 - The Instant Effect of Kinesiology Taping in Patients With Knee OA N/A
Recruiting NCT06080763 - Biomechanics and Clinical Outcomes in Responders and Non-Responders
Completed NCT03643588 - The Comparison of HYAJOINT Plus and Hyalgan Hyaluronan Supplement for Knee Osteoarthritis Pain N/A
Active, not recruiting NCT05100225 - Efficacy and Safety Trial of PTP-001 (MOTYS) for Symptomatic Knee Osteoarthritis Phase 2
Active, not recruiting NCT04061733 - New Hydroxyethyl Cellulose Hydrogel for the Treatment of the Pain of Knee Arthrosis N/A
Completed NCT04051489 - A Novel Smartphone Application for "Smart" Knee Osteoarthritis Trials
Recruiting NCT05546541 - Epidemiology and Nutrition
Recruiting NCT05447767 - Prediction AlgoriThm for regeneraTive Medicine Approach in knEe OA: New Decision-making Process Based on Patient pRofiliNg Phase 2
Not yet recruiting NCT04448106 - Autologous Adipose Tissue-Derived Mesenchymal Stem Cells (AdMSCs) for Osteoarthritis Phase 2
Not yet recruiting NCT03225911 - Effect of a Lateral Wedge Insole and Simple Knee Sleeve in Individuals With Knee Osteoarthritis N/A
Completed NCT05070871 - A Clinical Trial Investigating the Effect of Salmon Bone Meal on Osteoarthritis Among Men and Women N/A
Completed NCT05703087 - Positive Cueing in Knee Arthroplasty. N/A
Not yet recruiting NCT06042426 - Effects of Perioperative Intravenous Dexamethasone in Clinical Outcomes After Total Knee Arthroplasty in a Hispanic Population Phase 4
Completed NCT02881775 - Immediate Effects of rTMS on Excitability of the Quadriceps With Knee Osteoarthritis N/A
Not yet recruiting NCT02854176 - Somatosensory Stimulation in Knee Osteoarthritis Phase 2
Terminated NCT02909257 - Motor-Sparing Femoral Nerve Block Dose Phase 4