View clinical trials related to Orthostatic Hypotension.
Filter by:The Autonomic (or "automatic") Nervous System (ANS) regulates internal processes, including control of heart rate and blood pressure (BP). When someone stands, and gravity tries to pull blood away from the brain, the ANS works to maintain BP and brain blood flow. Neurogenic Orthostatic Hypotension (NOH) occurs when our "fight-or-flight" part ("sympathetic") of the ANS fails. BP can drop a lot when upright, reducing blood flow and oxygen delivery to the brain, and this can cause symptoms of light-headedness, nausea, and fainting. One solution to help counter the effects of NOH may be to increase sympathetic activity by breathing higher levels of carbon dioxide. In healthy volunteers, small increases in the amount of inhaled carbon dioxide has been shown to increase BP in the upright position, and this improves symptoms! The objectives of the current study are to apply carbon dioxide in patients with NOH and healthy controls to: (a) evaluate the effects of breathing carbon dioxide on BP and brain blood flow, and (b) determine if a device that increases carbon dioxide while standing will work as a new therapy
Incidence of orthostatic intolerance and orthostatic hypotension after intravenous administration of morphine in patients prior to hip or knee arthroplasty.
Incidence and pathophysiologic hemodynamics of postoperative orthostatic intolerance and orthostatic hypotension in patients receiving antihypertensives
This study looks to characterize gradients of dysfunction in the autonomic nervous system after spinal cord injury. The autonomic nervous system plays key roles in regulation of blood pressure, skin blood flow, and bladder health- all issues that individuals with spinal cord injury typically suffer. Focusing on blood pressure regulation, the most precise metric with broad clinical applicability, the investigators will perform laboratory-based tests to probe the body's ability to generate autonomic responses. For both individuals with spinal cord injury and uninjured controls, laboratory-based experiments will utilize multiple parallel recordings to identify how the autonomic nervous system is able to inhibit and activate signals. The investigators anticipate that those with autonomic dysfunction after spinal cord injury will exhibit abnormalities in these precise metrics. The investigators will further have research participants wear a smart watch that tracks skin electrical conductance, heart rate, and skin temperature, which can all provide clues as to the degree of autonomic dysfunction someone may suffer at home. The investigators will look to see if any substantial connections exist between different degrees of preserved autonomic function and secondary autonomic complications from spinal cord injury. In accomplishing this, the investigators hope to give scientists important insights to how the autonomic nervous system works after spinal cord injury and give physicians better tools to manage these secondary autonomic complications.
Incidence and pathophysiologic hemodynamics of orthostatic intolerance and orthostatic hypotension in patients undergoing UKA
This study seeks to evaluate whether the speed (cadence) of lower extremity robotic movement has an impact on orthostatic hypotension and upright tolerance when training with the ErigoPro robotic tilt-stepper. It is hypothesized more frequent short-lasting leg movements (faster cadence) reduces the occurrence/severity of orthostatic hypotension better than less frequent longer-lasting leg movements (slower cadence).
Incidence and pathophysiologic hemodynamics of orthostatic intolerance and orthostatic hypotension in patients undergoing unilateral THA
Elderly patients generally have a tendency for having sarcopenia which refers to muscle loss that may be related to many factors. These patients also have a tendency to falls and injuries. Whether elderly sarcopenic patients have abrupt blood pressure drops upon standing remains unknown. Therefore, in this study, we sought to determine the incidence of orthostatic hypotension in sarcopenic elderly patients and compare it with elderly patients with no sarcopenia.
The automated inflatable abdominal binder is an investigational device for the treatment of orthostatic hypotension (low blood pressure on standing) in patients with autonomic failure. The purpose of this study is to determine safety and effectiveness of the automated abdominal binder in improving orthostatic tolerance in these patients.
The purpose of this study is to learn more about the effects of midodrine and droxidopa, two medications used for the treatment of orthostatic hypotension (low blood pressure on standing), on the veins of the abdomen of patients with autonomic failure. The study will be conducted at Vanderbilt University Medical Center, and consists of 2 parts: a screening and 2 testing days. The total length of the study will be about 5 days. About 34 participants will be screened for the study.