View clinical trials related to Oligodendroglioma.
Filter by:Rationale: Standard postoperative treatment of isocitrate dehydrogenase 1/2 mutated grade 2 and 3 glioma (IDHmG) consists of radiotherapy and chemotherapy. The improving prognosis of these patients leads towards more emphasis on the long-term effects of treatment. Specifically radiotherapy has been implicated in the development of delayed neurocognitive deterioration. The impact of modern radiotherapy techniques (such as intensity modulated radiotherapy, volumetric modulated radiotherapy and proton beam therapy) and chemotherapy on general toxicity, late neurocognitive outcomes and imaging changes is currently unclear. Objectives: - To report treatment outcomes and radiation-induced toxicity from a prospective, multicentre observational cohort of IDHmG patients treated with radiotherapy and chemotherapy, - To integrate radiotherapeutic dose distributions, imaging changes and neuropsychological outcome in IDHmG. - To evaluate the Dutch selection criteria for proton therapy applied to IDHmG based on the outcomes collected in this observational study. - To assess the impact of proton and photon therapy on health-related quality of life (HRQoL) and health-related economics (HR-E) in IDHmG patients. - To collect genetic material for future translational research into the interaction between germline DNA, prognosis and radiation-induced toxicity. Nature and extent of the burden and risks associated with participation, benefit and group relatedness: This project is a multicentre, observational cohort of patients undergoing radiotherapy and chemotherapy for IDHmG. The protocol closely follows the local guidelines for clinical follow-up. Specific to the study are extra questionnaires and specific imaging acquired during scheduled MRI's. Routine neuropsychological investigation is standard of care in Erasmus Medical Center (Erasmus MC), but not in all participating centers. We feel the additional burden of participation in this study to be low.
This pilot study will assess the safety and feasibility of using an implantable microdevice to measure local intratumor response to chemotherapy and other clinically relevant drugs in malignant brain tumors. - The device involved in this study is called a microdevice. - The drugs used in this study will only include drugs already used systemically for the treatment of gliomas.
This clinical trial evaluates the use of microdialysis catheters during surgery to collect biomarkers, and studies the feasibility of intraoperative microdialysis during neurosurgery for central nervous system malignancies. A biomarker is a measurable indicator of the severity or presence of disease state. Information collected in this study may help doctors to develop new strategies to better diagnose, monitor, and treat brain tumors.
A roll-over study to assess long-term effect in pediatric patients treated with dabrafenib and/or trametinib.
The PIONEER Initiative stands for Precision Insights On N-of-1 Ex vivo Effectiveness Research. The PIONEER Initiative is designed to provide access to functional precision medicine to any cancer patient with any tumor at any medical facility. Tumor tissue is saved at time of biopsy or surgery in multiple formats, including fresh and cryopreserved as a living biospecimen. SpeciCare assists with access to clinical records in order to provide information back to the patient and the patient's clinical care team. The biospecimen tumor tissue is stored in a bio-storage facility and can be shipped anywhere the patient and the clinical team require for further testing. Additionally, the cryopreservation of the biospecimen allows for decisions about testing to be made at a later date. It also facilitates participation in clinical trials. The ability to return research information from this repository back to the patient is the primary end point of the study. The secondary end point is the subjective assessment by the patient and his or her physician as to the potential benefit that this additional information provides over standard of care. Overall the goal of PIONEER is to enable best in class functional precision testing of a patient's tumor tissue to help guide optimal therapy (to date this type of analysis includes organoid drug screening approaches in addition to traditional genomic profiling).
This trial studies the side effects and how well ketoconazole works before surgery in treating patients with glioma that has come back or breast cancer that has spread to the brain. Ketoconazole is an antifungal drug that may be able to block a protein, tGLI1 and may help to treat brain tumors.
This research study is evaluating an investigational drug, an oncolytic virus called rQNestin34.5v.2. This research study is a Phase I clinical trial, which tests the safety of an investigational drug and also tries to define the appropriate dose of the investigational drug as a possible treatment for this diagnosis of recurrent or progressive brain tumor.
By employing a combination of advanced MRI techniques and correlative serum biomarkers of blood brain barrier (BBB) disruption, the investigators plan to develop a powerful, first of its kind clinical algorithm in pediatrics whereby the investigators can measure and identify the window of maximal BBB disruption post MLA to 1) allow for an alternative to surgery in incompletely resected tumors, 2) allow for optimal chemotherapeutic dosing to achieve the greatest benefits and the least systemic side effects and 3) distinguish subsequent tumor progression from long-term MLA treatment effects. Preliminary data in adult imaging studies have shown that the BBB disruption lasts for several weeks following treatment before returning to a low baseline. This pilot therapeutic study will provide preliminary validation in pediatric patients.
The purpose of the study is to determine the clinical safety and operability of the innovative tissue imprint device ProTool.
MicroRNAs (miRNA) are molecular biomarkers that post-transcriptionally control target genes. Deregulated miRNA expression has been observed in diverse cancers. In high grade gliomas, known as glioblastomas, the investigators have identified an oncogenic miRNA, miRNA-10b (mir-10b) that is expressed at higher levels in glioblastomas than in normal brain tissue. This study tests the hypothesis that in primary glioma samples mir-10b expression patterns will serve as a prognostic and diagnostic marker. This study will also characterize the phenotypic and genotypic diversity of glioma subclasses. Furthermore, considering the critical function of anti-mir-10b in blocking established glioblastoma growth, the investigators will test in vitro the sensitivity of individual primary tumors to anti-mir-10b treatment. Tumor, blood and cerebrospinal fluid samples will be obtained from patients diagnosed with gliomas over a period of two years. These samples will be examined for mir-10b expression levels. Patient survival, as well as tumor grade and genotypic variations will be correlated to mir-10b expression levels.