View clinical trials related to Oligodendroglioma.
Filter by:This study seeks to investigate an evidence-based, manualized, behavioral health intervention, Cognitive Behavioral Therapy for Insomnia (CBT-I), in individuals with primary brain tumors (PBT) and insomnia. Our project will assess the feasibility and acceptability of recruitment, enrollment, data collection procedures, and retention of individuals with PBT and insomnia in the behavioral health intervention, CBT-I, and investigate the potential benefits of CBT-I within this at-risk and understudied population. In the long term, the goals are to expand treatment options for neuro-oncology patients and improve their mission readiness and overall wellbeing.
This study will enroll 6 DLT evaluable subjects (up to 12 patients total) where we will evaluate feasibility and safety of adoptive cellular therapy in patients with recurrent or progressive oligodendroglioma WHO grade 2 and WHO grade 3.
As a part of molecular imaging, many PET tracers have been investigated in this regard. Those include 18F-FDG being glucose analogue, 18F-FLT representing nucleoside metabolism, and 18F-FDOPA, 18F-FET, 11C-MET as amino acids analogues. Among these, 18F-FDG is the most commonly used tracer due to its broader use and easy availability. However, high physiological uptake in the brain is a significant limitation. The main limitation of other tracers is the need for onsite cyclotrons for their production, making their availability difficult. So, the search for an ideal modality is still ongoing, and the latest addition to this search is a radio ligand labeled Prostate Specific Membrane Antigen (PSMA). It is a new but potentially promising radiotracer, currently showing its utility in different malignancies. Investigators, therefore, aim to identify whether Ga-68 PSMA PET-CT has better diagnostic accuracy in the detection of recurrent gliomas than conventional imaging modalities.
The goal of this study is to determine the efficacy of the study drug olutasidenib to treat newly diagnosed pediatric and young adult patients with a high-grade glioma (HGG) harboring an IDH1 mutation. The main question the study aims to answer is whether the combination of olutasidenib and temozolomide (TMZ) can prolong the life of patients diagnosed with an IDH-mutant HGG.
It is a single-center, prospective, observational, non-randomized study of newly diagnosed oligodendroglioma patients conducted in a tertiary hospital. The investigators conduct an eight-year follow-up, including patients' psychological stress, immune biomarker changes, quality of life, and disease progression of patients towards secondary glioma after the first definite diagnosis. In the first year after diagnosis, patients are followed up four times at 1 month, 3 months, 6 months, and 12 months. After that, patients are followed up semiannually. The study had two cohorts, a high-stress cohort and a low-stress cohort, which are grouped after initial recruitment. Both groups undergo total resection of tumors and received 3 months of standardized treatment with radiotherapy and chemotherapy. Neither participants nor doctors but the researcher can choose which group participants are in. No one knows if one study group is better or worse than the other.
This early phase I trial tests the safety and reliability of an investigational imaging technique called quantitative oblique back illumination microscopy (qOBM) during brain surgery for detecting brain tumors and brain tumor margins in patients with glioblastoma, astrocytoma, or oligodendroglioma. Surgical margins refer to the edge or border of the tissue removed in cancer surgery. qOBM may be able to assess and reveal brain tumor surgical margins in a more safe and reliable manner.
The purpose of the study is to determine the safety and efficacy of intracranially implanted Carmustine in the treatment of patients with primary malignant glioma.